- A containment hierarchy of classes of formal grammars
 - We've seen formal grammars used to describe the class of context-free languages
 - It turns out formal grammars can be used to describe other classes of languages we've discussed (as well as one we haven't)

Grammar	Languages	Automaton	Production Rules
Туре 0	Turing Recognizable	ТМ	$\alpha \rightarrow \beta$ No restrictions except α contains at least one variable
Type 1	Context–Sensitive	LBA (linear bounded automaton)	αAβ→αγβ α,γ,β all strings, γ must be non-empty, A is a variable
Type 2	Context-Free	PDA	$A \rightarrow \gamma$ γ is a non-empty string, A is a variable
Туре 3	Regular	DFA	$A \rightarrow \alpha, A \rightarrow \alpha B$ α is a terminal, A,B are variables

- Type 3: Regular Languages
 - Production Rules:
 - A→α
 - A→αB
 - α is a terminal
 - A, B are variables
 - E.g. a*bc*
 - S \rightarrow aS | bT | b | cU
 - T \rightarrow cT | c | aU | bU
 - U \rightarrow aU | bU | cU

Starting rule straight to ε is allowed to generate empty string

Draw the DFA and you'll see the 3 states (S,T,U), and all of the transitions correspond to grammar rules

- Type 2: Context-Free Languages
 - We've studied these.
 - They (in particular the subset of deterministic context-free languages) are the theoretical basis for phrase structure of most programming languages
 - Treat as if in normal form
 - (starting variable straight to ε is allowed for generating the empty string)

Type 1: Context-Sensitive Languages

- Production rules:
 - αΑβ→αγβ
 - A is a variable
 - Everything else is a string made up of variables and terminals
 - γ must be non-empty
 - This forces $|\alpha A\beta| \leq |\alpha \gamma \beta|$
 - The derivation never shrinks in size
 - (starting variable straight to ε is allowed for generating the empty string)

- Type 1: Context-Sensitive Languages
 - Production rules:
 - αΑβ→αγβ
 - Ultimately we want to replace $A \rightarrow \gamma$, but we do it in the context of the surrounding symbols α and β . Thus we can have different rules for replacing A depending on the context.
 - These languages are recognized by a *linear bounded automaton.*
 - A non-deterministic Turing machine whose tape is bounded by a constant factor times the length of the input

Type 0: Turing-recognizable Languages

- Production rules:
 - α→β
 - No restrictions except that α contains at least one variable.
 - Other than that, they are just strings of variables and terminals.
 - Thus it's possible for a production rule to cause the overall derivation to shrink in size!
 - Decidable languages are not a specific member of the overall hierarchy. They would be between Type 0 and Type 1.