Chomsky Hierarchy

Chomsky Hierarchy

» A containment hierarchy of classes of formal
grammars

- We've seen formal grammars used to describe the
class of context-free languages

> |t turns out formal grammars can be used to
describe other classes of languages we’ve discussed
(as well as one we haven’t)

Chomsky Hierarchy

Grammar

Languages

Automaton

Production Rules

Type O

Type 1

Type 2

Type 3

Turing Recognizable TM

Context-Sensitive

Context-Free

Regular

LBA (linear
bounded

automaton)

PDA

DFA

oc—f

No restrictions except
@ contains at least one
variable

xAB—ayfp

x,Y,P all strings,

Y must be non-empty,
A is a variable

A—r

Y is a hon-empty
string,

A is a variable

A—c, A—xB
o is a terminal,
A,B are variables

Chomsky Hierarchy

Turing-recognizable (Type 0)
Context-sensitive (Type 1)
Context-Free (Type 2)
Regular (TypeD

.

Chomsky Hierarchy

» Type 3. Regular Languages

> Production Rules:

- A—X Starting rule straight to
. ¢ is allowed to generate
A—aB empty string

- & is a terminal
- A, B are variables

> E.g. a*bc* Draw the DFA and you'll
-S — aS|bT|b]|cU see the 3 states (S,T,U),
. T = ¢Tlclau]|bu and all of the transitions

correspond to grammar

-U — aU|bU|cU rules

Chomsky Hierarchy

» Type 2. Context-Free Languages

- We've studied these.

- They (in particular the subset of deterministic
context-free languages) are the theoretical basis for
phrase structure of most programming languages

> Treat as if in normal form

- (starting variable straight to ¢ is allowed for generating
the empty string)

Chomsky Hierarchy

» Type 1. Context-Sensitive Languages

> Production rules:
- XAB—ayp

- A'is a variable
- Everything else is a string made up of variables and
terminals
- Y must be non-empty
- This forces |xAB| < |xyB|
- The derivation never shrinks in size

- (starting variable straight to € is allowed for generating the
empty string)

Chomsky Hierarchy

» Type 1. Context-Sensitive Languages

> Production rules:
- XAB—ayp

- Ultimately we want to replace A—y, but we do it in the
context of the surrounding symbols o« and B. Thus we
can have different rules for replacing A depending on
the context.

- These languages are recognized by a linear bounded
automaton.

- A non-deterministic Turing machine whose tape is bounded
by a constant factor times the length of the input

Chomsky Hierarchy

» Type 0: Turing-recognizable Languages

> Production rules:
. a—B
- No restrictions except that o contains at least one
variable.
- Other than that, they are just strings of variables and
terminals.

- Thus it’s possible for a production rule to cause the
overall derivation to shrink in size!

- Decidable languages are not a specific member of the
overall hierarchy. They would be between Type 0 and

