

}  A containment hierarchy of classes of formal
grammars

◦  We’ve seen formal grammars used to describe the
class of context-free languages

◦  It turns out formal grammars can be used to
describe other classes of languages we’ve discussed
(as well as one we haven’t)

Grammar Languages Automaton Production Rules

Type 0 Turing Recognizable TM α→β
No restrictions except
α contains at least one
variable

Type 1 Context-Sensitive LBA (linear
bounded
automaton)

αAβ→αγβ
α,γ,β all strings,
γ must be non-empty,
A is a variable

Type 2 Context-Free PDA A→γ!
γ is a non-empty
string,
A is a variable

Type 3 Regular DFA A→α, A→αB
α is a terminal,
A,B are variables

Regular (Type 3)

Context-Free (Type 2)

Context-sensitive (Type 1)

Turing-recognizable (Type 0)

}  Type 3: Regular Languages

◦  Production Rules:
�  A→α
�  A→αB
�  α is a terminal
�  A, B are variables

◦  E.g. a*bc*
�  S → aS | bT | b | cU
�  T → cT | c | aU | bU
�  U → aU | bU | cU

Draw the DFA and you’ll
see the 3 states (S,T,U),
and all of the transitions
correspond to grammar
rules

Starting rule straight to
𝜀 is allowed to generate
empty string

}  Type 2: Context-Free Languages

◦  We’ve studied these.

◦  They (in particular the subset of deterministic
context-free languages) are the theoretical basis for
phrase structure of most programming languages

◦  Treat as if in normal form
�  (starting variable straight to 𝜀 is allowed for generating

the empty string)

}  Type 1: Context-Sensitive Languages

◦  Production rules:
�  αAβ→αγβ

�  A is a variable
�  Everything else is a string made up of variables and

terminals
�  γ must be non-empty

�  This forces |αAβ| ≤ |αγβ|
�  The derivation never shrinks in size
�  (starting variable straight to ε is allowed for generating the

empty string)

}  Type 1: Context-Sensitive Languages

◦  Production rules:
�  αAβ→αγβ

�  Ultimately we want to replace A→γ, but we do it in the
context of the surrounding symbols α and β. Thus we
can have different rules for replacing A depending on
the context.

�  These languages are recognized by a linear bounded
automaton.
�  A non-deterministic Turing machine whose tape is bounded

by a constant factor times the length of the input

}  Type 0: Turing-recognizable Languages

◦  Production rules:
�  α→β
�  No restrictions except that α contains at least one

variable.
�  Other than that, they are just strings of variables and

terminals.
�  Thus it’s possible for a production rule to cause the

overall derivation to shrink in size!

�  Decidable languages are not a specific member of the
overall hierarchy. They would be between Type 0 and
Type 1.

