Computability

Undecidability

- Informally, a problem is called <u>unsolvable</u> or <u>undecidable</u> if no algorithm exists that solves the problem.
- Algorithm
 - Implies a TM that decides a solution for the problem
- Decides
 - Implies will always give an answer

What about encoding TMs

- Consider the following
 - $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts w} \}$
 - This one we've seen it's undecidable
 - However, The Universal Turing Machine U recognizes A_{TM}

The Halting Problem

- Consider the following
 - $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M halts on input w} \}$
 - Is the halting problem solvable?

The Halting Problem

- Suppose HALT_{TM} is solvable?
 - $\,^{\circ}\,$ Could that help us solve $A_{TM}\,?$ (which would be a contradiction)
 - $\circ\,$ Remember, to show A_{TM} is solvable, we need to be able to show that there exists a TM S that decides A_{TM} :
 - S = "On input <M, w> where M is a TM and w is a string:
 - Do these steps to show that S decides A_{TM}

The Halting Problem

- Suppose HALT_{TM} is solvable let TM R be a decider for HALT_{TM}.
 - Now consider this decider for A_{TM} :
 - S = "On input <M, w> where M is a TM and w is a string:
 - Run TM R on <M,w>
 - If R rejects (indicating it doesn't halt) then reject
 - If R accepts, then simulate M on w until it halts (which it must)
 - If M accepts, then accept. If M rejects, reject.
 - Thus S decides A_{TM} , which is a contradiction. It follows that $HALT_{TM}$ must be undecidable.

Observation

- Note that the proof that HALT_{TM} is undecidable is much simpler than the proof that A_{TM} is undecidable
 - The strategy for proving that a problem Y is undecidable is to use an already-known-to-beundecidable problem X
 - We used a related approach a lot to show that languages were decidable as well)
 - Note some choices of X will work much better than others

- We're interested in <u>reducing</u> one problem to another
- Problem X reduces to problem Y
 - Is equivalent to saying
- If we have a solution to Y, that gives us a solution to X

- For decidability:
 - We start off with Y known decidable, and
 - we show X reduces to Y
 - We conclude that X is decidable as well

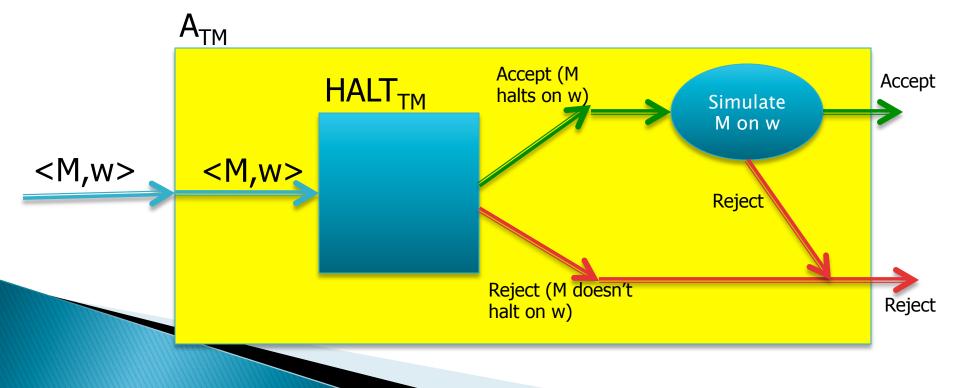
 Using this technique: we have a collection of known, decidable, languages to use as Y. Our task is to demonstrate the reduction of X to Y.

- For undecidability:
 - We have the contrapositive:
 - We start off with X known undecidable, and
 we show X reduces to Y
 - We conclude that Y is undecidable as well
 - Using this technique: we have a collection of known, undecidable, languages to use as X. Our task is to demonstrate the reduction of X to Y.

- For undecidability:
 - Undecidability follows by contradiction
 - We assume that Y is decidable
 - Once we show that X reduces to Y, that implies that X is decidable as well, which is a contradiction
 - Thus our assumption that Y is decidable must be false

Visualization of Undecidability Reduction

- Assumption: we have a black box that can decide what we're trying to show undecidable (Y in this case $HALT_{TM}$).
- Having access to this black box allows us to solve another problem (the larger yellow box) that we already know isn't decidable (X – in this case A_{TM}). CONTRADICTION



Another Undecidability Example

- $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- We will build a contradiction by assuming that E_{TM} is decidable, and showing that this would imply A_{TM} is decidable.
- (Another way of thinking about it. We will show that the problem A_{TM} can be reduced to the problem E_{TM} . Since A_{TM} is known undecidable, E_{TM} must be undecidable as well.)

Another Example

- Recall $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts w } \}$
- Strategy: build a modified TM that will isolate w
- From <M,w> build a TM M_w that can be described as follows:
- On input x:
 - If $x \neq w$ then reject.
 - Otherwise, run M on input w and if it accepts M_w accepts.
 - $L(M_w)$ can only have one possible string in it.

Another Example

- Note that
 - if M accepts w, then $L(M_w)$ is not empty.
 - If M rejects w (outright or by looping), then L(M_w) is empty (since w is the only string M_w can possibly accept)
 - M accepts w if and only if $L(M_w)$ is not empty.

Another Example

- By our assumption, E_{TM} is decidable.
- $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- There exists a TM, R that will decide it.
- Remember, to show A_{TM} is solvable, we need to be able to show that there exists a TM S that decides A_{TM} :
 - S = "On input <M, w> where M is a TM and w is a string:
 - Use the description of M and w to construct the TM $\rm M_w$
 - Run R (our E_{TM} decider) on input $< M_w >$
 - If R accepts, reject. If R rejects, accept."

• Thus S decides A_{TM} , which is a contradiction. It follows that E_{TM} must be undecidable.

One More Example: TM Equality

- EQ_{TM} = {<M₁, M₂> | M₁ and M₂ are TMs, and L(M₁) = L(M₂)}
- TM Equality is unsolvable.
 - Show this by contradiction. Assume that it is solvable (decidable) and prove that by using this assumption you can construct a TM that decides some other language we already know to be undecidable
 - Candidate languages: A_{TM} , HALT_{TM}, E_{TM}

One More Example: TM Equality

For a given TM, M, compare M to a TM M_{empty} that accepts no strings.

Note that

- if the language of M is empty, then $L(M) = L(M_{empty})$.
- If the language of M is not empty then L(M) \neq L(M_{empty}).

One More Example: TM Equality

- ▶ By our assumption, EQ_{TM} is decidable.
- $EQ_{TM} = \{ <M_1, M_2 > | M_1 \text{ and } M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$
- There exists a TM, R that will decide it.
- Remember, to show E_{TM} is solvable (and reach our contradiction), we need to be able to show that there exists a TM S that decides E_{TM} :
 - S = "On input < M > where M is a TM:
 - Run R (our EQ_{TM} decider) on input <M, $M_{empty}\!>$ where M_{empty} is a TM that rejects all input
 - If R accepts, accept. If R rejects, reject.
- Thus S decides E_{TM} , which is a contradiction. It follows that EQ_{TM} must be undecidable.

- Rice's Theorem
 - Testing *any* non-trivial property of languages recognized by Turing machines is undecidable (see Problem 5.28)

Rice's Theorem

• Formally, let P be a language consisting of Turing machine descriptors where P fulfills two conditions. First, P is nontrivial – it contains some, but not all TM descriptions. Second, P is a property of the TM's language – whenever $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in P$ if and only if $\langle M_2 \rangle \in P$. Here M_1 and M_2 are any TMs. Then P is an undecidable language.

Rice's Theorem – what does it mean?

 Formally, let P be a language consisting of Turing machine descriptors ...

• This means it has the form:

•
$$P = \{ \langle M \rangle | M \text{ is a TM and } ... \}$$

Rice's Theorem – what does it mean?

- P is nontrivial it contains some, but not all TM descriptions ...
- This means there must be at least one TM, M_{in} , whose description $<M_{in}>$ is in the language P, and at least one TM, M_{out} , whose description $<M_{out}>$ is not in the language P

- Rice's Theorem what does it mean?
 P is a property of the TM's language ...
 - This means it has the form:
 - $P = \{ \langle M \rangle | M \text{ is a TM and } L(M) \dots \}$

Applying Rice's Theorem

Does Rice's Theorem imply that:

- 1. E_{TM} is undecidable?
- 2. A_{TM} is undecidable?
- 3. FINITE_{TM} is undecidable? (for a TM, M, if L(M) is finite, then $\langle M \rangle$ is an element of FINITE_{TM})
- 4. {<M> | M is a TM and L(M) is Turing-recognizable} is undecidable?
- 5. EQ_{TM} is undecidable?
- 6. {<M> | M is a TM and M has exactly four states} is undecidable?
- 7. {<M> | M is a TM and $\epsilon \in L(M)$ } is undecidable?
- 8. $\{\langle M \rangle \mid M \text{ is a TM and } M \text{ halts on } \epsilon\}$ is undecidable?
- 9. $\{\langle M \rangle \mid M \text{ is a TM and } |L(M)| \ge 0\}$ is undecidable?

Applying Rice's Theorem

- Does Rice's Theorem imply that:
 - 1. Yes
 - 2. No not of proper form
 - 3. Yes
 - 4. No trivial property of language; all TM satisfy
 - 5. No not of proper form
 - 6. No not of proper form (not property of language)
 - **7.** Yes
 - 8. No not of proper form (not property of language)
 - 9. No trivial property of language; all TM satisfy

- An undecidable problem about string matching.
- Valuable tool for proving other problems undecidable (CFG ambiguity)
- Given 2 lists of strings (each list with the same total number of strings; repeats allowed).
- Represent as a collection dominoes each domino contains a string from list 1 and a corresponding string from list 2.

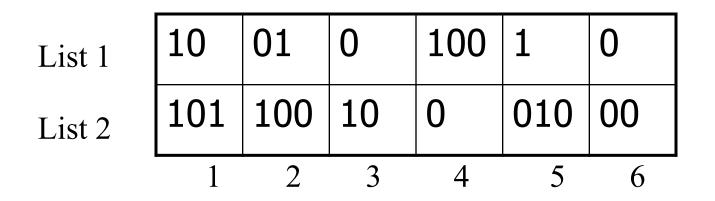
Can we pick a sequence of corresponding strings from the two lists (i.e. pick a collection of dominoes – repeats allowed) such that when we line them up, we get the same concatenated string on the top and the bottom?

• Example:

List 1	10	01	0	100	1	0
List 2	101	100	10	0	010	00
	1	2	3	4	5	6

Choose a sequence of indices: 1,3,4
 List1: 10 0 100 List 2: 101 10 0

Is there a set of indices such that both lists produce the same string?



Try 1, 4, 6
 List 1: 101000
 List 2 :101000

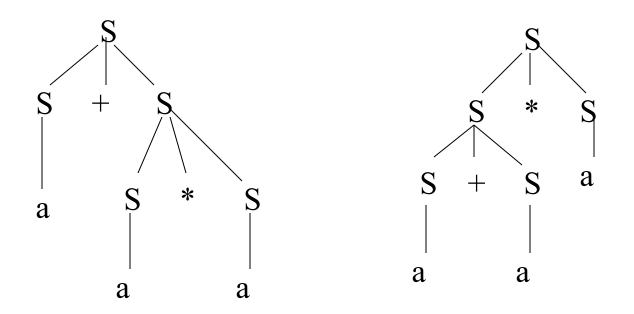
- The Post Correspondence Problem (PCP) is undecidable (Thm. 5.15)
- Is PCP Turing-recognizable?
 - Yes, just list out all possible sequence of growing size
 - There are k strings to choose from, so only a finite number of possibilities for each size
 - This will discover all accept scenarios in finite time, but will certainly loop if it doesn't find anything

Ambiguity Revisited

Ambiguity

- Showing a particular grammar is ambiguous:
 - Find a string w in L(G) that has two derivations
- Showing a particular grammar is <u>not</u> ambiguous is usually difficult.
- <u>Making a statement about the ambiguity of any</u> <u>grammar is not possible.</u>

Recall: Ambiguity and Parse Trees



Same string: a + a * a, 2 derivations

- AMB_{CFG} = {<G> | G is a context free grammar and G is ambiguous}
- > The CFG Ambiguity problem is unsolvable.
- Can be shown using the undecidability of PCP
- Assume AMB_{CFG} is solvable and arrive at a contradiction with PCP solvability

- Given an instance of PCP
 - 2 lists of strings T & B, all strings $\in \Sigma^*$

•
$$T = (t_1, t_2, ..., t_k)$$

- $B = (b_1, b_2, ..., b_k)$
- Build a CFG, G with
 - Terminal set that includes Σ plus special symbols { $a_1, a_2, ..., a_k$ } that are new terminals

- Instance of PCP
 - 2 lists of strings T & B, all strings $\in \Sigma^*$
 - $T = (t_1, t_2, ..., t_k)$
 - $B = (b_1, b_2, ..., b_k)$

Productions of G

• S → T | B
• T →
$$t_1Ta_1 | t_2Ta_2 | ... | t_kTa_k$$

• T → $t_1a_1 | t_2a_2 | ... | t_ka_k$
• B → $b_1Ba_1 | b_2Ba_2 | ... | b_kBa_k$

 $\circ B \rightarrow b_1 a_1 \mid b_2 a_2 \mid \dots \mid b_k a_k$

- To show that deciding G lets us decide PCP, we need to show that PCP has a solution if and only if G is ambiguous
 - (then knowing whether G is ambiguous via the output of our assumed AMB_{CFG} decider will allow us to decide PCP – a contradiction)

- Assume G is ambiguous
 - A given string could have at most 1 derivation starting from T (similarly at most 1 derivation starting from B)
 - If a given string has 2 derivations, one must derive from T and the other from B
 - The string with 2 derivations will have the tail:
 - $a_{im} \dots a_{i2}a_{i1}$ for some $m \ge 1$
 - On the T derivation the head will be $t_{i1}t_{i2}...t_{im}$
 - On the B derivation the head will be $b_{i1}b_{i2}...b_{im}$
 - $t_{i1}t_{i2}...t_{im} = b_{i1}b_{i2}...b_{im}$
 - (i1, i2, ...im) is a solution to the PCP

• Conversely, if P has a match $t_{i1}t_{i2}...t_{im} = b_{i1}b_{i2}...b_{im}$

The string $t_{i1}t_{i2}...t_{im}a_{im}...a_{i2}a_{i1} = b_{i1}b_{i2}...b_{im}a_{im}...a_{i2}a_{i1}$ has a derivation from T and another from B

Hence the CFG is ambiguous

- Thus AMB_{CFG} decider allows us to decide PCP, which is a contradiction.
- So AMB_{CFG} is unsolvable.