Computability

Undecidability

» Informally, a problem is called unsolvable or
undecidable if no algorithm exists that
solves the problem.

» Algorithm

- Implies a TM that decides a solution for the
problem

» Decides
> Implies will always give an answer

p—

What about encoding TMs

» Consider the following

° Ary =1 <M, w> | MisaTM and M accepts w}

- This one we’ve seen - it’s undecidable

- However, The Universal Turing Machine U recognizes
ATM

The Halting Problem

» Consider the following

> HALT, =1 <M, w> | M is a TM and M halts on
input wj}

> |s the halting problem solvable?

The Halting Problem

» Suppose HALT+,, is solvable?

> Could that help us solve A4y, 7 (which would be a
contradiction)

- Remember, to show A, is solvable, we need to be
able to show that there exists a TM S that decides

Ay
- S ="0On input <M, w> where Misa TM and w is a
string:

- Do these steps to show that S decides Aqy

The Halting Problem

» Suppose HALT,, is solvable - let TM R be a
decider for HALT,.

- Now consider this decider for A
- S ="0On input <M, w> where Mis a TM and w is a
string:
- Run TM R on <M,w>
- If R rejects (indicating it doesn’t halt) then reject

- If R accepts, then simulate M on w until it halts (which it
must)

- If M accepts, then accept. If M rejects, reject.
> Thus S decides Aqy, which is a contradiction. It
follows that HALT;,, must be undecidable.

Observation

» Note that the proof that HALT, is
undecidable is much simpler than the proof

that A, is undecidable

- The strategy for proving that a problem Y is
undecidable is to use an already-known-to-be-
undecidable problem X

- (We used a related approach a lot to show that
languages were decidable as well)

- Note - some choices of X will work much better
than others

Reductions

» We’'re interested in reducing one problem to
another

» Problem X reduces to problem Y

- Is equivalent to saying

» If we have a solution to Y, that gives us a
solution to X

Reductions

» For decidability:

- We start off with Y known decidable, and
- we show X reduces to Y

- We conclude that X is decidable as well

- Using this technique: we have a collection of
known, decidable, languages to use as Y. Our task
is to demonstrate the reduction of X to Y.

p—

Reductions

» For undecidability:

- We have the contrapositive:

- We start off with X known undecidable, and
- we show X reduces to Y

- We conclude that Y is undecidable as well

- Using this technique: we have a collection of known,
undecidable, languages to use as X. Our task is to
demonstrate the reduction of X to Y.

Reductions

» For undecidability:

- Undecidability follows by contradiction
- We assume that Y is decidable

- Once we show that X reduces to Y, that implies that X is
decidable as well, which is a contradiction

- Thus our assumption that Y is decidable must be false

Visualization of Undecidability
Reduction

» Assumption: we have a black box that can decide what we’re
trying to show undecidable (Y - in this case HALT,).

» Having access to this black box allows us to solve another
problem (the larger yellow box) that we already know isn’t
decidable (X - in this case Ag,). CONTRADICTION

ATM

Accept (M
HALTTM halts on w Accept

/ Monw

\ Reje

Reject (M doesn &
halt on w) Reject

Simulate

<M,w> <M,w>

Another Undecidability Example
» Egy ={ <M> | MisaTMand L(M) = @ }

» We will build a contradiction by assuming that Eq, is
decidable, and showing that this would imply Ay, is
decidable.

» (Another way of thinking about it. We will show that
the problem A4y, can be reduced to the problem Ey,.
Since Aqy, is known undecidable, E;,, must be
undecidable as well.)

Another Example

» Recall Ay ={ <M, w> | Mis aTM and M accepts w }

» Strategy: build a modified TM that will isolate w

» From <M,w> build a TM M, that can be described

as follows:
> On input x:
- If x = w then reject.
-+ Otherwise, run M on input w and if it accepts M,, accepts.
- L(M,) can only have one possible string in it.

Another Example

» Note that
- if M accepts w, then L(M,,) is not empty.
> If M rejects w (outright or by looping), then L(M,) is
empty (since w is the only string M, can possibly
accept)

> M accepts w if and only if L(M,) is not empty.

Another Example

» By our assumption, E;,, is decidable.
» By ={ <M> | MisaTMand L(M) = @ }
- There exists a TM, R that will decide it.

» Remember, to show A, is solvable, we need
to be able to show that there exists a TM S

that decides Ay, :
- S ="0On input <M, w> where Mis a TM and w is a

string:

- Use the description of M and w to construct the TM M,

- Run R (our E;, decider) on input <M, >

- If R accepts, reject. If R rejects, accept.”

o Thus S decides A, which is a contradiction. It

saliat Ery must be undecidable.

One More Example: TM Equality

» EQry = {<M;, My,> | M, and M, are TMs, and
L(M,) = L(M,)}

» TM Equality is unsolvable.

- Show this by contradiction. Assume that it is
solvable (decidable) and prove that by using this
assumption you can construct a TM that decides
some other language we already know to be
undecidable

- Candidate languages: A, HALTy, Eqy

p—

One More Example: TM Equality

» For a given TM, M, compare Mtoa TM M
that accepts no strings.

empty

» Note that
- if the language of M is empty, then L(M) = L(M

- If the language of M is not empty then L(M) +
L(M

empty)'

empty) -

One More Example: TM Equality

» By our assumption, EQ+, is decidable.

» EQry = {<M,, My,> | M, and M, are TMs, L(M,) = L (M,)}

- There exists a TM, R that will decide it.

» Remember, to show E;, is solvable (and reach
our contradiction), we need to be able to show

that there exists a TM S that decides E, :

- S ="“On input <M> where M is a TM:
* Run R (our EQqy decider) on input <M, M,,,,> where M.,
is a TM that rejects all input
- If R accepts, accept. If R rejects, reject.

> Thus S decides E+,, which is a contradiction. It follows

Rice’s Theorem

» Rice’s Theorem
- Testing any non-trivial property of languages
recognized by Turing machines is undecidable
(see Problem 5.28)

Rice’s Theorem

» Rice’s Theorem

- Formally, let P be a language consisting of Turing
machine descriptors where P fulfills two
conditions. First, P is nontrivial - it contains
some, but not all TM descriptions. Second, P is a
property of the TM’s language - whenever L(M,) =
L(M,), we have <M,> € P if and only if <M,> € P.
Here M, and M, are any TMs. Then P is an
undecidable language.

Rice’s Theorem

» Rice’s Theorem - what does it mean?

- Formally, let P be a language consisting of Turing
machine descriptors ...

> This means it has the form:

cP={<M>|MisaTMand ... }

Rice’s Theorem

» Rice’s Theorem - what does it mean?

> P is nontrivial - it contains some, but not all TM
descriptions ...

> This means there must be at least one TM, M.,
whose description <M, > is in the language P,
and at least one TM, M_,,, whose description
<M, > is not in the language P

out

Rice’s Theorem

» Rice’s Theorem - what does it mean?
- Pis a property of the TM’s language ...

> This means it has the form:

cP={<M>|MisaTMand L(M) ... }

Applying Rice’s Theorem

» Does Rice’s Theorem imply that:

1.
2.
3.

4,

U1

00 N

9.

E;y is undecidable?

Aqy is undecidable?

FINITE;, is undecidable? (for a TM, M, if L(M) is finite, then
<M> is an element of FINITE,,)

{<M> | Mis a TM and L(M) is Turing-recognizable} is
undecidable?

EQ;y is undecidable?

{<M> | M is a TM and M has exactly four states} is
undecidable?

{<M> | MisaTM and € € L(M)} is undecidable?
{<M> | Mis a TM and M halts on €} is undecidable?
{<M> | Mis aTM and |L(M)| = 0O} is undecidable?

Applying Rice’s Theorem

» Does Rice’s Theorem imply that:

O 00N O YA Y

Yes

No - not of proper form

Yes

No - trivial property of language; all TM satisfy

No - not of proper form

No - not of proper form (not property of language)
Yes

No - not of proper form (not property of language)
No - trivial property of language; all TM satisfy

Post Correspondence Problem

» An undecidable problem about string
matching.

» Valuable tool for proving other problems
undecidable (CFG ambiguity)

» Given 2 lists of strings (each list with the same
total number of strings; repeats allowed).

» Represent as a collection dominoes - each
domino contains a string from list 1 and a
corresponding string from list 2.

Post Correspondence Problem

» Can we pick a sequence of corresponding
strings from the two lists (i.e. pick a
collection of dominoes - repeats allowed)
such that when we line them up, we get the
same concatenated string on the top and the
bottom?

p—

Post Correspondence Problem

» Example:

Ll |10 |01 [0 [100(1 |O
i, |101]100(10 |0 |010 |00

1 2 3 4 5 6

- Choose a sequence of indices: 1,3,4

» List1: TOO 100 List2: 101 100

Post Correspondence Problem

» Is there a set of indices such that both lists

produce the same string?

Lisc1 (10 |01 |0 100 |1 0
risto (1011100110 |0 010 |00
1 2 3 4 5 6
» Try 1,4, 6

List 1:

101000

List 2 :1T01000

Post Correspondence Problem

» The Post Correspondence Problem (PCP) is
undecidable (Thm. 5.15)

» Is PCP Turing-recognizable?

> Yes, just list out all possible sequence of growing size

> There are k strings to choose from, so only a finite
number of possibilities for each size

- This will discover all accept scenarios in finite time,
but will certainly loop if it doesn’t find anything

p—

Ambiguity Revisited

» Ambiguity
- Showing a particular grammar is ambiguous:
 Find a string w in L(G) that has two derivations

> Showing a particular grammar is not ambiguous is
usually difficult.

- Making a statement about the ambiquity of any
grammar is not possible.

Recall: Ambiguity and Parse Trees

s/f\m A/*\
AR

I Same string: a +a * a, 2 derivations

CFG Ambiguity

» AMBrc = {<G> | G is a context free grammar
and G is ambiguous}

» The CFG Ambiguity problem is unsolvable.
» Can be shown using the undecidability of PCP

» Assume AMB.. is solvable and arrive at a
contradiction with PCP solvability

m L —

CFG Ambiguity

» Given an instance of PCP

- 2 lists of strings T & B, all strings € 2"
- T=(t, ty, ...,)
. B=(by, b,, ..., by

» Build a CFG, G with

- Terminal set that includes X plus special symbols
{a;,, a,, ..., 3, } that are new terminals

CFG Ambiguity

» Instance of PCP

- 2 lists of strings T & B, all strings € X"
cT=0(@,t, ..t
- B=(by, b,, ..., by

» Productions of G

-S—=T|B

o T—=1t,Ta, | t,Ta, | ... | t Ta,
© T%t]a] | t2a2 | | tkak

- B—b,Ba,; | bBa, | ... | b Ba,

°B—=Dbya; | b,a, | ... | ba,

CFG Ambiguity

» To show that deciding G lets us decide PCP,
we need to show that PCP has a solution if
and only if G is ambiguous

> (then knowing whether G is ambiguous via the
output of our assumed AMB ;. decider will allow
us to decide PCP - a contradiction)

p—

CFG Ambiguity

» Assume G is ambiguous

- A given string could have at most 1 derivation starting from
T (similarly at most 1 derivation starting from B)
- If a given string has 2 derivations, one must derive from T
and the other from B
> The string with 2 derivations will have the tail:
* 3, -.- Apd; for some m =1
- On the T derivation the head will be t;t,,...t;,
+ On the B derivation the head will be b;;b;,...b;,
’ t|1t|2 - I:)Hb|2 b
- (i, |m) is a solutlon to the PCP

» Conversely, if P has a match t;;t,...t.,, = b;;bi,...b;,
» The string t,;t,...t. . a;, -.- a»a; = b,;b,,...b, &, ... a,a;; has
a derivation from T and another from B
| ge the CFG is ambiguous

CFG Ambiguity

» Thus AMB., decider allows us to decide PCP, which
is a contradiction.

» SO AMB is unsolvable.

