


}  Informally, a problem is called unsolvable or 
undecidable if no algorithm exists that 
solves the problem. 

}  Algorithm 
◦  Implies a TM that decides a solution for the 

problem 
}  Decides 
◦  Implies will always give an answer 



}  Consider the following 

◦  ATM = { <M, w> | M is a TM and M accepts w} 

�  This one we’ve seen – it’s undecidable 

�  However, The Universal Turing Machine U recognizes 
ATM 



}  Consider the following 

◦  HALTTM = { <M, w> | M is a TM and M halts on 
input w} 

◦  Is the halting problem solvable? 



}  Suppose HALTTM is solvable? 

◦  Could that help us solve ATM ? (which would be a 
contradiction) 

◦  Remember, to show ATM is solvable, we need to be 
able to show that there exists a TM S that decides 
ATM : 
�  S = “On input <M, w> where M is a TM and w is a 

string: 
�  Do these steps to show that S decides ATM 



}  Suppose HALTTM is solvable – let TM R be a 
decider for HALTTM. 
◦  Now consider this decider for ATM: 
�  S = “On input <M, w> where M is a TM and w is a 

string: 
�  Run TM R on <M,w> 
�  If R rejects (indicating it doesn’t halt) then reject 
�  If R accepts, then simulate M on w until it halts (which it 

must) 
�  If M accepts, then accept.  If M rejects, reject. 

◦  Thus S decides ATM, which is a contradiction.  It 
follows that HALTTM must be undecidable. 



}  Note that the proof that HALTTM is 
undecidable is much simpler than the proof 
that ATM is undecidable 
◦  The strategy for proving that a problem Y is 

undecidable is to use an already-known-to-be-
undecidable problem X 
◦  (We used a related approach a lot to show that 

languages were decidable as well) 
◦  Note – some choices of X will work much better 

than others  



}  We’re interested in reducing one problem to 
another 

}  Problem X reduces to problem Y  

�  Is equivalent to saying 

}  If we have a solution to Y, that gives us a 
solution to X 



}  For decidability: 

◦  We start off with Y known decidable, and 
◦  we show X reduces to Y 

�  We conclude that X is decidable as well 

◦  Using this technique:  we have a collection of 
known, decidable, languages to use as Y. Our task 
is to demonstrate the reduction of X to Y. 



}  For undecidability: 

◦  We have the contrapositive: 

◦  We start off with X known undecidable, and 
◦  we show X reduces to Y 

�  We conclude that Y is undecidable as well 

◦  Using this technique:  we have a collection of known, 
undecidable, languages to use as X. Our task is to 
demonstrate the reduction of X to Y. 



}  For undecidability: 

◦  Undecidability follows by contradiction 
�  We assume that Y is decidable 

�  Once we show that X reduces to Y, that implies that X is 
decidable as well, which is a contradiction 

�  Thus our assumption that Y is decidable must be false 

 



}  Assumption: we have a black box that can decide what we’re 
trying to show undecidable (Y – in this case HALTTM). 

}  Having access to this black box allows us to solve another 
problem (the larger yellow box) that we already know isn’t 
decidable (X – in this case ATM).  CONTRADICTION 

<M,w> 

Accept (M 
halts on w) 

Reject (M doesn’t 
halt on w) 

<M,w> 

ATM 

HALTTM 

Reject 

Simulate 
M on w 

Reject 

Accept 



}  ETM = { <M> | M is a TM and L(M) = Ø } 

}  We will build a contradiction by assuming that ETM is 
decidable, and showing that this would imply ATM is 
decidable. 

}  (Another way of thinking about it.  We will show that 
the problem ATM can be reduced to the problem ETM.  
Since ATM is known undecidable, ETM must be 
undecidable as well.) 

 



}  Recall ATM = { <M, w> | M is a TM and M accepts w } 

}  Strategy:  build a modified TM that will isolate w 

}  From <M,w> build a TM Mw that can be described 
as follows: 
◦  On input x: 
�  If x ≠ w then reject. 
�  Otherwise, run M on input w and if it accepts Mw accepts. 
�  L(Mw) can only have one possible string in it. 



}  Note that  
◦  if M accepts w, then L(Mw) is not empty.   
◦  If M rejects w (outright or by looping), then L(Mw) is 

empty (since w is the only string Mw can possibly 
accept) 

◦  M accepts w if and only if L(Mw) is not empty. 



}  By our assumption, ETM is decidable. 
}  ETM = { <M> | M is a TM and L(M) = Ø } 
◦  There exists a TM, R that will decide it. 
}  Remember, to show ATM is solvable, we need 

to be able to show that there exists a TM S 
that decides ATM : 
�  S = “On input <M, w> where M is a TM and w is a 

string: 
�  Use the description of M and w to construct the TM Mw 
�  Run R (our ETM decider) on input <Mw> 
�  If R accepts, reject.  If R rejects, accept.” 

◦  Thus S decides ATM, which is a contradiction.  It 
follows that ETM must be undecidable. 



}  EQTM = {<M1, M2> | M1 and M2 are TMs, and 
L(M1) = L(M2)}  

}  TM Equality is unsolvable. 
◦  Show this by contradiction.  Assume that it is 

solvable (decidable) and prove that by using this 
assumption you can construct a TM that decides 
some other language we already know to be 
undecidable 
◦  Candidate languages:  ATM, HALTTM, ETM  



}  For a given TM, M, compare M to a TM Mempty 
that accepts no strings. 

}  Note that  
◦  if the language of M is empty, then L(M) = L(Mempty). 
◦  If the language of M is not empty then L(M) ≠ 

L(Mempty). 



}  By our assumption, EQTM is decidable. 
}  EQTM = {<M1, M2> | M1 and M2 are TMs, L(M1) = L (M2)}  
◦  There exists a TM, R that will decide it. 
}  Remember, to show ETM is solvable (and reach 

our contradiction), we need to be able to show 
that there exists a TM S that decides ETM : 
�  S = “On input <M> where M is a TM: 

�  Run R (our EQTM decider) on input <M, Mempty> where Mempty 
is a TM that rejects all input 

�  If R accepts, accept.  If R rejects, reject. 
◦  Thus S decides ETM, which is a contradiction.  It follows 

that EQTM must be undecidable. 



}  Rice’s Theorem  
◦  Testing any non-trivial property of languages 

recognized by Turing machines is undecidable 
(see Problem 5.28) 



}  Rice’s Theorem  
◦  Formally, let P be a language consisting of Turing 

machine descriptors where P fulfills two 
conditions.  First, P is nontrivial – it contains 
some, but not all TM descriptions.  Second, P is a 
property of the TM’s language – whenever L(M1) = 
L(M2), we have <M1> ∈ P if and only if <M2> ∈ P.  
Here M1 and M2 are any TMs.  Then P is an 
undecidable language. 



}  Rice’s Theorem – what does it mean? 
◦  Formally, let P be a language consisting of Turing 

machine descriptors … 

◦  This means it has the form: 

◦  P = { <M> | M is a TM and … } 



}  Rice’s Theorem – what does it mean? 
◦  P is nontrivial – it contains some, but not all TM 

descriptions … 

◦  This means there must be at least one TM, Min, 
whose description <Min> is in the language P, 
and at least one TM, Mout, whose description 
<Mout> is not in the language P 

 



}  Rice’s Theorem – what does it mean? 
◦  P is a property of the TM’s language … 

◦  This means it has the form: 

◦  P = { <M> | M is a TM and L(M) … } 



}  Does Rice’s Theorem imply that: 
1.  ETM is undecidable? 
2.  ATM is undecidable? 
3.  FINITETM is undecidable? (for a TM, M, if L(M) is finite, then 

<M> is an element of FINITETM) 
4.  {<M> | M is a TM and L(M) is Turing-recognizable} is 

undecidable? 
5.  EQTM is undecidable? 
6.  {<M> | M is a TM and M has exactly four states} is 

undecidable? 
7.  {<M> | M is a TM and ε ∈ L(M)} is undecidable? 
8.  {<M> | M is a TM and M halts on ε} is undecidable? 
9.  {<M> | M is a TM and |L(M)| ≥ 0} is undecidable? 



}  Does Rice’s Theorem imply that: 
1.  Yes 
2.  No – not of proper form 
3.  Yes 
4.  No – trivial property of language; all TM satisfy 
5.  No – not of proper form 
6.  No – not of proper form (not property of language) 
7.  Yes 
8.  No – not of proper form (not property of language) 
9.  No – trivial property of language; all TM satisfy 



}  An undecidable problem about string 
matching. 

}  Valuable tool for proving other problems 
undecidable (CFG ambiguity) 

 
}  Given 2 lists of strings (each list with the same 

total number of strings; repeats allowed).   
}  Represent as a collection dominoes – each 

domino contains a string from list 1 and a 
corresponding string from list 2. 



}  Can we pick a sequence of corresponding 
strings from the two lists (i.e. pick a 
collection of dominoes – repeats allowed) 
such that when we line them up, we get the 
same concatenated string on the top and the 
bottom? 



}  Example: 

◦  Choose a sequence of indices: 1,3,4 
}  List1: 10 0 100     List 2: 101 10 0 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List 1 

List 2 



}  Is there a set of indices such that both lists 
produce the same string? 
 

}  Try 1, 4, 6 
}  List 1: 101000          List 2 :101000 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List 1 

List 2 



}  The Post Correspondence Problem (PCP) is 
undecidable (Thm. 5.15) 

}  Is PCP Turing-recognizable? 

◦  Yes, just list out all possible sequence of growing size 
◦  There are k strings to choose from, so only a finite 

number of possibilities for each size 

◦  This will discover all accept scenarios in finite time, 
but will certainly loop if it doesn’t find anything 



}  Ambiguity 
◦  Showing a particular grammar is ambiguous: 
�  Find a string w in L(G) that has two derivations 

◦  Showing a particular grammar is not ambiguous is 
usually difficult. 

◦  Making a statement about the ambiguity of any 
grammar is not possible. 



S 

S + S 

a S * S 

a a 

S 

S * S 

S + S a 

a a 

Same string:  a + a * a, 2 derivations 



}  AMBCFG = {<G> | G is a context free grammar 
and G is ambiguous}  

}  The CFG Ambiguity problem is unsolvable. 

}  Can be shown using the undecidability of PCP 

}  Assume AMBCFG is solvable and arrive at a 
contradiction with PCP solvability 



}  Given an instance of PCP 
◦  2 lists of strings T & B, all strings ∈ Σ* 
�  T = (t1, t2, …, tk) 
�  B = (b1, b2, …, bk) 

}  Build a CFG, G with 
◦  Terminal set that includes Σ plus special symbols 

{ a1, a2, …, ak } that are new terminals 



}  Instance of PCP 
◦  2 lists of strings T & B, all strings ∈ Σ* 
�  T = (t1, t2, …, tk) 
�  B = (b1, b2, …, bk) 

}  Productions of G 
◦  S → T | B 
◦  T → t1Ta1 | t2Ta2 | … | tkTak 
◦  T → t1a1 | t2a2 | … | tkak 
◦  B → b1Ba1 | b2Ba2 | … | bkBak 
◦  B → b1a1 | b2a2 | … | bkak 



}  To show that deciding G lets us decide PCP, 
we need to show that PCP has a solution if 
and only if G is ambiguous 
◦  (then knowing whether G is ambiguous via the 

output of our assumed AMBCFG decider will allow 
us to decide PCP – a contradiction) 



}  Assume G is ambiguous 
◦  A given string could have at most 1 derivation starting from 

T (similarly at most 1 derivation starting from B) 
◦  If a given string has 2 derivations, one must derive from T 

and the other from B 
◦  The string with 2 derivations will have the tail: 

�  aim … ai2ai1  for some m ≥ 1 
�  On the T derivation the head will be ti1ti2…tim 
�  On the B derivation the head will be bi1bi2…bim 
�  ti1ti2…tim = bi1bi2…bim 
�  (i1, i2, …im) is a solution to the PCP 

}  Conversely, if P has a match ti1ti2…tim = bi1bi2…bim 
}  The string ti1ti2…timaim … ai2ai1 = bi1bi2…bimaim … ai2ai1 has 

a derivation from T and another from B 
}  Hence the CFG is ambiguous 



}  Thus AMBCFG decider allows us to decide PCP, which 
is a contradiction. 

}  So AMBCFG is unsolvable. 


