
and their languages 



}  Some languages are Turing-decidable 
◦  A Turing Machine will halt on all inputs (either 

accepting or rejecting).  No infinite loops. 
}  Some languages are Turing-recognizable, but 

not decidable. 
◦  A Turing Machine recognizes the language, but it 

will loop infinitely on some inputs 
}  Some languages are not Turing-recognizable 
◦  There is no Turing Machine that can recognize the 

language 
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}  Game plan 
1.  Show that there exists a language that is Turing-

recognizable but not decidable. 

2.  Show that there exists a language that is not 
Turing-recognizable.  

Note:  it’s not enough to just design a TM that 
loops on some input.  As we’ve seen, this may just 
be a poor approach, and a better (TM decider) 
approach may exist.  Instead, we have to prove 
there is no way to build such a decider. 



}  Variety of Unsolvable problems 
◦  Hilbert’s 10th problem:  determine if a polynomial has 

an integral root 
◦  Software Verification:  determine if software is 

performing as it is intended to 
◦  Ambiguity:  determine if an arbitrary context-free 

grammar is ambiguous 
◦  Acceptance test for Turing Machines:  determine if an 

arbitrary Turing Machine accepts an arbitrary string 
◦  Halting problem for Turing Machines:  determine if 

an arbitrary Turing Machine halts on a given input 
string 



}  Running algorithms on objects: 
◦  TMs take strings as input. 
◦  For running “algorithms” on other objects,  
�  Must encode the object as a string. 
�  Any decent encoding will do. 
�  When running TMs on objects, it is assumed that decoding 

gets performed by the TM and that input is valid. 

◦  Notation: 
�  If O is an object to be input to a TM, <O> is the encoded 

object. 
�  If O1, O2, …, On are multiple objects to be used as input to a 

TM, <O1, O2, …, On > is the encoded list of objects. 



}  Examples of decidable languages in which the 
accepted strings are encodings of objects 

�  A = {<G>| G is a connected undirected graph } 
�  ADFA = {<B,w> | B is a DFA that accepts input string w} 
�  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)} 
�  ACFG = {<G,w> | G is a CFG that generates string w} 
�  ECFG = {<G> | G is a CFG and L(G) = Ø} 



}  Consider the following 

◦  ATM = { <M, w> | M is a TM and M accepts w} 

�  This is the acceptance problem for Turing Machines 
�  ATM is the language corresponding to whether a string is 

accepted by a given Turing Machine 
 

�  Can we build a TM that takes a TM as input… 

�  Yes, but this is where we will lose decidability 



}  Note that ATM is recognizable. 

}  Define TM U as follows: 
◦  U = “on input <M, w>, where M is a TM,  and w is a 

string: 
�  Simulate M on input w 
�  If M accepts, U accepts.  If M rejects, U rejects.” 

}  U recognizes ATM  
}  U is sometimes called the Universal Turing 

Machine.   (it can simulate any other TM) 



}  Proof by contradiction 
◦  Assume ATM = {<M, w> | M is a TM and M accepts w} 

is decidable 
◦  Let H be a decider for ATM  
�  H is a TM that halts on all inputs 

◦  Next we construct a TM, D, that takes as input the 
encoding of a TM, M.   
�  It uses H as a subroutine to determine what M does with 

a string w that is actually the encoding of the machine M 
itself.  That is, it simulates H on input <M, <M>>. 

�  Whatever H does – D does the opposite 



}  Proof by contradiction 
◦  D = “On input <M> where M is a TM: 
�  Run H on input <M, <M>> 
�  Output the opposite of what H outputs. 

◦  D accepts <M> if H rejects <M, <M>> 
�  D accepts <M> if M does not accept <M> 
◦  D rejects <M> if H accepts <M, <M>> 
�  D rejects <M> if M accepts <M> 



}  Proof by contradiction 
◦  D accepts <M> if M does not accept <M> 
◦  D rejects <M> if M accepts <M> 

}  What happens if D is run with its own 
description? 
◦  D accepts <D> if D does not accept <D> 
◦  D rejects <D> if D accepts <D> 
�  CONTRADICTION 

}  D and H can not exist:  ATM is not decidable 



}  Turing-unrecognizable languages exist 
◦  Consider any arbitrary Turing Machine 
�  M = (Q, Σ, Γ , δ, q0, qaccept, qreject)  
◦  We can define a small alphabet to encode M 
�  E.g. Σ = {0, 1, p} 

�  0,1 are used to indicate numerical values 
�  How many states there are 
�  Unicode/ASCII encoding of alphabet symbols 
�  Details of transition function 

�  p is a punctuation symbol that is used to demarcate 
different pieces of the string 

}  Any TM can be encoded using just these symbols! 



}  Turing-unrecognizable languages exist 
◦  Consider finite alphabet Σ 
◦  How many strings over Σ ? 
�  Countably infinite – we can list all strings of length 0, 

1, 2, … 
◦  How many TM can be encoded using Σ ? 
�  Countably infinite (some subset of all strings over Σ) 

�  Thus there at most are countably infinite different TM, 
and each recognizes only 1 language 



}  Turing-unrecognizable languages exist 
◦  How many languages are there over Σ ? 
�  Power set of all strings over Σ 
�  All subsets of an infinite collection 
�  Uncountably infinite 

�  SOME (MOST) OF THESE LANGUAGES HAVE NO TURING 
MACHINE TO RECOGNIZE THEM 



}  The complement of ATM is not Turing-
recognizable 

}  This will follow from the following theorem: 
◦  A language is decidable if and only if it is Turing-

recognizable and co-Turing-recognizable 

�  (A language is co-Turing-recognizable if its 
complement is Turing-recognizable) 



}  A language is decidable if and only if it is Turing-
recognizable and co-Turing-recognizable 
◦  Assume language A is decidable. 

�  Decidable languages are closed under complement. 
�  (Since TM halts on all input, we can have a different TM 

that flip-flops reject/accept.  It also halts on all input, 
and accepts the complement of A.) 

�  So both A and A’ are decidable 
�  Decidable languages are also recognizable. 



}  A language is decidable if and only if it Turing-
recognizable and co-Turing-recognizable 
◦  Assume A and A’ are both Turing-recognizable. 
◦  Let M1 be a TM for A 
◦  Let M2 be a TM for A’ 

�  M1 and M2 may loop on some inputs, but they halt on all 
accepted strings. 

�  Have TM M run both M1 and M2 in parallel (take turns 
running each machine for an increasing number of steps) 
�  if M1 accepts, then M accepts 
�  If M2 accepts, then M rejects 
�  Since M1 and M2 both halt on accepting inputs, M will halt on 

all inputs 



}  The complement of ATM is not Turing-
recognizable 

◦  We know ATM is Turing-recognizable but not 
decidable. 
◦  If the complement of ATM were Turing-recognizable, 

then by the previous theorem, they would both also 
be decidable. 



}  The class of decidable languages is closed 
under: 
◦  Union  
◦  Concatenation 
◦  Kleene Star 
◦  Complementation 
◦  Intersection 
◦  Difference 

◦  See Problem 3.15 for details 



}  The class of Turing-recognizable languages 
is closed under: 
◦  Union  
◦  Concatenation 
◦  Kleene Star 
◦  Intersection 

}  But not closed under complementation (we 
just showed that using ATM ) 
◦  And therefore not closed under difference either 


