
and their languages

}  Some languages are Turing-decidable
◦  A Turing Machine will halt on all inputs (either

accepting or rejecting). No infinite loops.
}  Some languages are Turing-recognizable, but

not decidable.
◦  A Turing Machine recognizes the language, but it

will loop infinitely on some inputs
}  Some languages are not Turing-recognizable
◦  There is no Turing Machine that can recognize the

language

Regular

Finite

Deterministic Context Free

Context Free

Decidable

Turing-Recognizable

Is there anything
out here?

What lives
 here?

}  Game plan
1.  Show that there exists a language that is Turing-

recognizable but not decidable.

2.  Show that there exists a language that is not
Turing-recognizable.

Note: it’s not enough to just design a TM that
loops on some input. As we’ve seen, this may just
be a poor approach, and a better (TM decider)
approach may exist. Instead, we have to prove
there is no way to build such a decider.

}  Variety of Unsolvable problems
◦  Hilbert’s 10th problem: determine if a polynomial has

an integral root
◦  Software Verification: determine if software is

performing as it is intended to
◦  Ambiguity: determine if an arbitrary context-free

grammar is ambiguous
◦  Acceptance test for Turing Machines: determine if an

arbitrary Turing Machine accepts an arbitrary string
◦  Halting problem for Turing Machines: determine if

an arbitrary Turing Machine halts on a given input
string

}  Running algorithms on objects:
◦  TMs take strings as input.
◦  For running “algorithms” on other objects,
�  Must encode the object as a string.
�  Any decent encoding will do.
�  When running TMs on objects, it is assumed that decoding

gets performed by the TM and that input is valid.

◦  Notation:
�  If O is an object to be input to a TM, <O> is the encoded

object.
�  If O1, O2, …, On are multiple objects to be used as input to a

TM, <O1, O2, …, On > is the encoded list of objects.

}  Examples of decidable languages in which the
accepted strings are encodings of objects

�  A = {<G>| G is a connected undirected graph }
�  ADFA = {<B,w> | B is a DFA that accepts input string w}
�  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)}
�  ACFG = {<G,w> | G is a CFG that generates string w}
�  ECFG = {<G> | G is a CFG and L(G) = Ø}

}  Consider the following

◦  ATM = { <M, w> | M is a TM and M accepts w}

�  This is the acceptance problem for Turing Machines
�  ATM is the language corresponding to whether a string is

accepted by a given Turing Machine

�  Can we build a TM that takes a TM as input…

�  Yes, but this is where we will lose decidability

}  Note that ATM is recognizable.

}  Define TM U as follows:
◦  U = “on input <M, w>, where M is a TM, and w is a

string:
�  Simulate M on input w
�  If M accepts, U accepts. If M rejects, U rejects.”

}  U recognizes ATM
}  U is sometimes called the Universal Turing

Machine. (it can simulate any other TM)

}  Proof by contradiction
◦  Assume ATM = {<M, w> | M is a TM and M accepts w}

is decidable
◦  Let H be a decider for ATM
�  H is a TM that halts on all inputs

◦  Next we construct a TM, D, that takes as input the
encoding of a TM, M.
�  It uses H as a subroutine to determine what M does with

a string w that is actually the encoding of the machine M
itself. That is, it simulates H on input <M, <M>>.

�  Whatever H does – D does the opposite

}  Proof by contradiction
◦  D = “On input <M> where M is a TM:
�  Run H on input <M, <M>>
�  Output the opposite of what H outputs.

◦  D accepts <M> if H rejects <M, <M>>
�  D accepts <M> if M does not accept <M>
◦  D rejects <M> if H accepts <M, <M>>
�  D rejects <M> if M accepts <M>

}  Proof by contradiction
◦  D accepts <M> if M does not accept <M>
◦  D rejects <M> if M accepts <M>

}  What happens if D is run with its own
description?
◦  D accepts <D> if D does not accept <D>
◦  D rejects <D> if D accepts <D>
�  CONTRADICTION

}  D and H can not exist: ATM is not decidable

}  Turing-unrecognizable languages exist
◦  Consider any arbitrary Turing Machine
�  M = (Q, Σ, Γ , δ, q0, qaccept, qreject)
◦  We can define a small alphabet to encode M
�  E.g. Σ = {0, 1, p}

�  0,1 are used to indicate numerical values
�  How many states there are
�  Unicode/ASCII encoding of alphabet symbols
�  Details of transition function

�  p is a punctuation symbol that is used to demarcate
different pieces of the string

}  Any TM can be encoded using just these symbols!

}  Turing-unrecognizable languages exist
◦  Consider finite alphabet Σ
◦  How many strings over Σ ?
�  Countably infinite – we can list all strings of length 0,

1, 2, …
◦  How many TM can be encoded using Σ ?
�  Countably infinite (some subset of all strings over Σ)

�  Thus there at most are countably infinite different TM,
and each recognizes only 1 language

}  Turing-unrecognizable languages exist
◦  How many languages are there over Σ ?
�  Power set of all strings over Σ
�  All subsets of an infinite collection
�  Uncountably infinite

�  SOME (MOST) OF THESE LANGUAGES HAVE NO TURING
MACHINE TO RECOGNIZE THEM

}  The complement of ATM is not Turing-
recognizable

}  This will follow from the following theorem:
◦  A language is decidable if and only if it is Turing-

recognizable and co-Turing-recognizable

�  (A language is co-Turing-recognizable if its
complement is Turing-recognizable)

}  A language is decidable if and only if it is Turing-
recognizable and co-Turing-recognizable
◦  Assume language A is decidable.

�  Decidable languages are closed under complement.
�  (Since TM halts on all input, we can have a different TM

that flip-flops reject/accept. It also halts on all input,
and accepts the complement of A.)

�  So both A and A’ are decidable
�  Decidable languages are also recognizable.

}  A language is decidable if and only if it Turing-
recognizable and co-Turing-recognizable
◦  Assume A and A’ are both Turing-recognizable.
◦  Let M1 be a TM for A
◦  Let M2 be a TM for A’

�  M1 and M2 may loop on some inputs, but they halt on all
accepted strings.

�  Have TM M run both M1 and M2 in parallel (take turns
running each machine for an increasing number of steps)
�  if M1 accepts, then M accepts
�  If M2 accepts, then M rejects
�  Since M1 and M2 both halt on accepting inputs, M will halt on

all inputs

}  The complement of ATM is not Turing-
recognizable

◦  We know ATM is Turing-recognizable but not
decidable.
◦  If the complement of ATM were Turing-recognizable,

then by the previous theorem, they would both also
be decidable.

}  The class of decidable languages is closed
under:
◦  Union
◦  Concatenation
◦  Kleene Star
◦  Complementation
◦  Intersection
◦  Difference

◦  See Problem 3.15 for details

}  The class of Turing-recognizable languages
is closed under:
◦  Union
◦  Concatenation
◦  Kleene Star
◦  Intersection

}  But not closed under complementation (we
just showed that using ATM)
◦  And therefore not closed under difference either

