

}  We’ll now take a look at Turing Machines at a
high level and consider what types of
problems can be solved algorithmically and
what types can’t:
◦  What languages are Turing-decidable?
◦  What languages are not Turing-decidable?
◦  Is there a language that isn’t even Turing-

recognizable?

}  We are going to follow Sipser’s convention for
describing Turing Machines at a high level

}  If we want to describe a Turing Machine, M,
that takes inputs A and B and solves a certain
problem, we’ll write this as:

�  M = “On input <A,B>, where A is a … and B is a …:
�  Enumerate the steps of the Turing Machine
�  If appropriate result occurs, accept. Otherwise, reject.”

Using book’s notation of putting
the TM algorithm in quotes

}  Acceptance problem for DFAs

◦  ADFA = {<B,w> | B is a DFA that accepts input string w}

◦  This language is decidable.
�  A high level description of a TM, M, that decides ADFA

�  M = “On input <B,w>, where B is a DFA and w is a string:
�  Simulate B on input w
�  If simulation ends in an accepting state, accept. If it ends in a

nonaccepting state, reject.”

Using book’s notation of putting
the TM algorithm in quotes

}  Acceptance problem for NFAs

◦  ANFA = {<B,w> | B is an NFA that accepts input
string w}

◦  This language is decidable.
�  N = “On input <B,w>, where B is an NFA and w is a

string:
�  Use subset construction to convert B to a DFA C
�  Use decider, M, for ADFA on input <C, w>
�  If M accepts, accept
�  If M rejects, reject”

}  Acceptance problem for Regular Expression

◦  AREX = {<R,w> | R is a regular expression that
describes input string w}

◦  This language is decidable.
�  P = “On input <R,w>, where R is a regular expression

and w is a string:
�  Convert R to an NFA, A
�  Use decider, N, for ANFA on input <A, w>
�  If N accepts, accept
�  If N rejects, reject”

}  Emptiness test for DFAs

◦  EDFA = {<A> | A is a DFA and L(A) = Ø}

◦  This language is decidable.
�  T = “On input <A>, where A is a DFA:

�  Mark start state of A
�  Repeat until no more states get marked
�  Mark any state that has a transition from a marked state

�  If no accept state is marked, accept…else reject.”

}  Equivalence test for DFAs

◦  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)}

◦  Important fact

L(C) = Ø iff L(A) = L(B)

€

L(C) = L(A)∩ L(B)()∪ L(A)∩ L(B)()
Symmetric difference

}  Equivalence test for DFAs

◦  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)}
◦  This language is decidable.
�  F = “On input <A,B>, where A and B are DFAs:

�  Construct symmetric difference DFA, C, using Cartesian
Product method

�  Run decider, T, for EDFA on input <C>
�  If T accepts, accept.
�  If T rejects, reject.”

}  Acceptance test for CFGs

◦  ACFG = {<G,w> | G is a CFG that generates string w}

◦  Basic idea:
�  Try all derivations to see if G will generate w.

�  Requires infinite derivations, won’t halt on non-accepted
input string

�  However, if G is in Chomsky Normal Form, any
derivation of w will take 2n-1 steps (for string of
length n).
�  Only finite number of these.

}  Acceptance test for CFGs

◦  ACFG = {<G,w> | G is a CFG that generates string w}

◦  This language is decidable.
�  S = “On input <G,w>, where G is a CFG and w is a

string:
�  Convert G to Chomsky Normal Form
�  List all derivations with 2n-1 steps, where |w| = n (except

when n = 0, in which case list all derivations with 1 step).
�  If any of these derivations generate w, accept, else reject.”

}  Emptiness test for CFGs

◦  ECFG = {<G> | G is a CFG and L(G) = Ø}

◦  Basic idea:
�  Cannot just test strings for membership in G using

decider for ACFG
�  Infinite number of w.

�  Instead…
�  Like EDFA but from the opposite direction
�  Find variables that will generate a string of terminals.
�  If start variable is in this set, L(G) not empty.

}  Emptiness test for CFGs

◦  ECFG = {<G> | G is a CFG and L(G) = Ø}

◦  This language is decidable.
�  R = “On input <G>, where G is a CFG:

�  Mark all terminals of G
�  Mark empty string symbol
�  Repeat until no more variables get marked
�  Mark any variable A where A!U1U2…Un and all Ui have been

marked.
�  If start variable is not marked, accept…else reject.”

}  Avoid infinite loops
}  Constructions allowed
◦  Build DFAs
◦  Minimize DFAs
◦  Subset construction
◦  Cartesian product construction

}  Appeal to known results
◦  Use already established decider TM as part of

solution
�  Derive an “if and only if” relation

}  Every context-free language is decidable

◦  Basic idea:
�  We could create a TM to simulate a PDA, but problem

with infinite loop in using stack. Some strings that are
not accepted might infinitely modify the stack, leading
to non-halting behavior.

�  Instead, use the membership test for CFGs just
developed.

}  Every context-free language is decidable

◦  Let G be the CFG that generates L.

�  Must create a TM, MG, that will accept strings in L, and
reject strings not in L.

�  MG = “On input string w:
�  Run decider, S, for ACFG with input <G,w>
�  If S accepts, accept…else reject.”

Regular

Finite

Deterministic Context Free

Context Free

Decidable

Turing-Recognizable

