Decidability

Decidability

» We’ll now take a look at Turing Machines at a
high level and consider what types of
problems can be solved algorithmically and
what types can’t:

- What languages are Turing-decidable?
- What languages are not Turing-decidable?

> |s there a language that isn’t even Turing-
recognizable?

A Note on Notation

» We are going to follow Sipser’s convention for
describing Turing Machines at a high level

» If we want to describe a Turing Machine, M,
that takes inputs A and B and solves a certain
problem, we’ll write this as:

* M ="On input <A,B>, where Aisa...andBis a ...
- Enumerate the steps of the Turing Machine
- If appropriate result occurs, accept. Otherwise, reject.”

Using book’s notation of putting
the TM algorithm in quotes

Decidable Languages: DFA

» Acceptance problem for DFAs

> Aprpa = {<B,w> | B is a DFA that accepts input string w}

> This language is decidable.

- A high level description of a TM, M, that decides Ay,
* M = “On input <B,w>, where B is a DFA and w is a string:
- Simulate B on input w

- If simulation ends in an accepting state, accept. If it ends in a
nonaccepting state, reject.”

Using book’s notation of putting
the TM algorithm in quotes

Decidable Languages: NFA

» Acceptance problem for NFAs

> Ayra = 1<B,w> | B is an NFA that accepts input
string wj}

> This language is decidable.
- N = “On input <B,w>, where B is an NFA and w is a
string:
- Use subset construction to convert Bto a DFA C
- Use decider, M, for Ay, on input <C, w>
- If M accepts, accept
- If M rejects, reject”

Decidable Languages: Regular
Expressions

» Acceptance problem for Regular Expression

> Apex = 1<R,w> | Ris a regular expression that
describes input string w}

- This language is decidable.
* P ="0On input <R,w>, where R is a regular expression
and w is a string:
- Convert R to an NFA, A
- Use decider, N, for Ay, On input <A, w>
- If N accepts, accept
- If N rejects, reject”

Decidable Languages: Emptiness
Test for DFAs

» Emptiness test for DFAs

> Eppa = {<A> | Ais a DFA and L(A) = @}

- This language is decidable.
- T ="On input <A>, where A is a DFA:
- Mark start state of A
- Repeat until no more states get marked
- Mark any state that has a transition from a marked state
- If no accept state is marked, accept...else reject.”

Decidable Languages: Equivalence
of DFAs

» Equivalence test for DFAs

> EQpea = {<A,B> | A and B are DFAs and L(A) = L(B)}

> Important fact
Symmetric difference

L(C) = (L(A) N @) (L(A) N L(B)

L(C) = @ iff L(A) = L(B) L(A), < Q > L(B)

Decidable Languages: Equivalence
of DFAs

» Equivalence test for DFAs

> EQpea = {<A,B> | A and B are DFAs and L(A) = L(B)}
> This language is decidable.

- F =“0On input <A,B>, where A and B are DFAs:

- Construct symmetric difference DFA, C, using Cartesian
Product method

- Run decider, T, for Eyz, On input <C>
- If T accepts, accept.
- If T rejects, reject.”

Decidable Languages: CFGs

» Acceptance test for CFGs

> Acre = 1<G,w> | G is a CFG that generates string w}

- Basic idea:

- Try all derivations to see if G will generate w.
- Requires infinite derivations, won’t halt on non-accepted
input string
- However, if G is in Chomsky Normal Form, any
derivation of w will take 2n-1 steps (for string of
length n).
- Only finite number of these.

Decidable Languages: CFGs
» Acceptance test for CFGs

> Acre = 1<G,w> | G is a CFG that generates string w}

> This language is decidable.
+ S =“Oninput <G,w>, where G is a CFG and w is a
string:
- Convert G to Chomsky Normal Form

- List all derivations with 2n-1 steps, where |w| = n (except
when n = 0, in which case list all derivations with 1 step).

- If any of these derivations generate w, accept, else reject.”

Decidable Languages: Emptiness
Test for CFGs

» Emptiness test for CFGs

° Ecpe = {<G> | Gis a CFG and L(G) = @}

- Basic idea:
- Cannot just test strings for membership in G using
decider for Aqqc
- Infinite number of w.
- Instead...
- Like Epgs but from the opposite direction
- Find variables that will generate a string of terminals.
- If start variable is in this set, L(G) not empty.

Decidable Languages: Emptiness
Test for CFGs

» Emptiness test for CFGs

° Ecpe = {<G> | Gis a CFG and L(G) = @}

> This language is decidable.

- R =“On input <G>, where G is a CFG:
- Mark all terminals of G
- Mark empty string symbol
- Repeat until no more variables get marked

+ Mark any variable A where AU,U,...U, and all U; have been
marked.

- If start variable is not marked, accept...else reject.”

Summary: Showing Decidability

» Avoid infinite loops

» Constructions allowed
> Build DFAs
> Minimize DFAs
> Subset construction
- Cartesian product construction

» Appeal to known results

- Use already established decider TM as part of
solution

- Derive an “if and only if” relation

p—

Decidable Languages: CFGs

» Every context-free language is decidable

> Basic idea:

- We could create a TM to simulate a PDA, but problem
with infinite loop in using stack. Some strings that are

not accepted might infinitely modify the stack, leading
to non-halting behavior.

- Instead, use the membership test for CFGs just
developed.

Decidable Languages: CFGs

» Every context-free language is decidable

> Let G be the CFG that generates L.

- Must create a TM, M, that will accept strings in L, and
reject strings not in L.
* M¢ = “On input string w:
- Run decider, S, for Aqgc with input <G,w>
- If S accepts, accept...else reject.”

Language Bubble

Turing-Recognizable

Decidable

Context Free

Deterministic Context Free

\

