


}  We’ll now take a look at Turing Machines at a 
high level and consider what types of 
problems can be solved algorithmically and 
what types can’t: 
◦  What languages are Turing-decidable? 
◦  What languages are not Turing-decidable? 
◦  Is there a language that isn’t even Turing-

recognizable? 



}  We are going to follow Sipser’s convention for 
describing Turing Machines at a high level 

}  If we want to describe a Turing Machine, M, 
that takes inputs A and B and solves a certain 
problem, we’ll write this as: 

�  M = “On input <A,B>, where A is a … and B is a …:  
�  Enumerate the steps of the Turing Machine 
�  If appropriate result occurs, accept.  Otherwise, reject.” 

Using book’s notation of putting 
the TM algorithm in quotes 



}  Acceptance problem for DFAs 

◦  ADFA = {<B,w> | B is a DFA that accepts input string w}  

◦  This language is decidable. 
�  A high level description of a TM, M, that decides ADFA 

�  M = “On input <B,w>, where B is a DFA and w is a string:  
�  Simulate B on input w 
�  If simulation ends in an accepting state, accept.  If it ends in a 

nonaccepting state, reject.” 

Using book’s notation of putting 
the TM algorithm in quotes 



}  Acceptance problem for NFAs 

◦  ANFA = {<B,w> | B is an NFA that accepts input 
string w}  

◦  This language is decidable. 
�  N = “On input <B,w>, where B is an NFA and w is a 

string:  
�  Use subset construction to convert B to a DFA C 
�  Use decider, M, for ADFA on input <C, w> 
�  If M accepts, accept 
�  If M rejects, reject” 



}  Acceptance problem for Regular Expression 

◦  AREX = {<R,w> | R is a regular expression that 
describes input string w}  

◦  This language is decidable. 
�  P = “On input <R,w>, where R is a regular expression 

and w is a string:  
�  Convert R to an NFA, A 
�  Use decider, N, for ANFA on input <A, w> 
�  If N accepts, accept 
�  If N rejects, reject” 



}  Emptiness test for DFAs 

◦  EDFA = {<A> | A is a DFA and L(A) = Ø}  

◦  This language is decidable. 
�  T = “On input <A>, where A is a DFA: 

�  Mark start state of A 
�  Repeat until no more states get marked 
�  Mark any state that has a transition from a marked state 

�  If no accept state is marked, accept…else reject.” 



}  Equivalence test for DFAs 

◦  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)}  

◦  Important fact 
 
 
 
 
L(C) = Ø iff L(A) = L(B) 

€ 

L(C) = L(A)∩ L(B)( )∪ L(A)∩ L(B)( )
Symmetric difference 



}  Equivalence test for DFAs 

◦  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)} 
◦  This language is decidable. 
�  F = “On input <A,B>, where A and B are DFAs: 

�  Construct symmetric difference DFA, C, using Cartesian 
Product method 

�  Run decider, T,  for EDFA on input <C> 
�  If T accepts, accept. 
�  If T rejects, reject.” 



}  Acceptance test for CFGs 

◦  ACFG = {<G,w> | G is a CFG that generates string w} 

◦  Basic idea: 
�  Try all derivations to see if G will generate w. 

�  Requires infinite derivations, won’t halt on non-accepted 
input string 

�  However, if G is in Chomsky Normal Form, any 
derivation of w will take 2n-1 steps (for string of 
length n).   
�  Only finite number of these.  



}  Acceptance test for CFGs 

◦  ACFG = {<G,w> | G is a CFG that generates string w} 

◦  This language is decidable. 
�  S = “On input <G,w>, where G is a CFG and w is a 

string: 
�  Convert G to Chomsky Normal Form 
�  List all derivations with 2n-1 steps, where |w| = n (except 

when n = 0, in which case list all derivations with 1 step). 
�  If any of these derivations generate w, accept, else reject.” 



}  Emptiness test for CFGs 

◦  ECFG = {<G> | G is a CFG and L(G) = Ø} 

◦  Basic idea: 
�  Cannot just test strings for membership in G using 

decider for ACFG 
�  Infinite number of w. 

�  Instead… 
�  Like EDFA but from the opposite direction 
�  Find variables that will generate a string of terminals. 
�  If start variable is in this set, L(G) not empty.  



}  Emptiness test for CFGs 

◦  ECFG = {<G> | G is a CFG and L(G) = Ø}  

◦  This language is decidable. 
�  R = “On input <G>, where G is a CFG: 

�  Mark all terminals of G 
�  Mark empty string symbol 
�  Repeat until no more variables get marked 
�  Mark any variable A where A!U1U2…Un and all Ui have been 

marked. 
�  If start variable is not marked, accept…else reject.” 



}  Avoid infinite loops 
}  Constructions allowed 
◦  Build DFAs 
◦  Minimize DFAs 
◦  Subset construction 
◦  Cartesian product construction 

}  Appeal to known results 
◦  Use already established decider TM as part of 

solution 
�  Derive an “if and only if” relation 



}  Every context-free language is decidable 

◦  Basic idea: 
�  We could create a TM to simulate a PDA, but problem 

with infinite loop in using stack.  Some strings that are 
not accepted might infinitely modify the stack, leading 
to non-halting behavior. 

�  Instead, use the membership test for CFGs just 
developed. 



}  Every context-free language is decidable 
 
◦  Let G be the CFG that generates L. 

�  Must create a TM, MG, that will accept strings in L, and 
reject strings not in L. 

�  MG = “On input string w: 
�  Run decider, S, for ACFG with input <G,w> 
�  If S accepts, accept…else reject.” 
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