Turing Machines

TM Variants

Turing Machine

» A Turing Machine consists of:
- A finite state machine
> An Input tape
- A movable read/write tape head
» A move of a Turing Machine

- Read the symbol on the tape at the current
position of the tape head

> Change the symbol on the tape at the current
position of the tape head

- Move the tape head

- Change the state of the machine based on current
state and symbol read

Turing Machine

» A note about the book’s definition
- TMs are deterministic
- Each input transitions to one (not multiple) output
- No e-transitions

- That said, for all states where transitions are not
defined:

- it is assumed there is a transition to the reject state.

Turing Machine

» Running a Turing Machine

- The execution of a TM can result in 3 possible
cases.
- Accept
- The machine halts in the accepting state
- Non-accept
- The machine halts in the rejecting state
- The machine goes into an “infinite loop”

Turing Machine

» Any language that is recognized by some Turing
Machine is said to be Turing-recognizable.

> The Turing Machine may loop on some rejected strings

- Sometime termed recursively enumerable in other books.

» A language is Turing—-decidable (or just decidable)
if some Turing Machine decides it

> It is recognized by a Turing Machine that halts on all input
- No infinite loops

> Sometimes termed a recursive language in other books.

Context Switch

» At this point, we are going to leave behind the
formal description of Turing Machines.

» We will use implementation and high-level
descriptions to talk about what we want a Turing
Machine to do.

» Concepts will be more abstract.

» We’ll be looking more big picture at what Turing
Machines can do. What type of problems can we
solve algorithmically.

Algorithms and Turing Machines

» Different levels for describing algorithms:

> Formal Description
- Define the states and transitions of a TM

- Implementation Description
- English prose that describes how the TM works.

- High-Level Description

- English prose that describes the algorithm (no mention
of TM implementation).

Turing Machine Properties

» There are many equivalent ways to define a TM

- Each equivalent representation recognizes the same class of
languages and decides the same class of languages

- We’ll conclude that adding bells and whistles to our basic
TM won’t give it any extra problem-solving power

» Today we will look at a few that the book mentions
(and doesn’t mention):

> TM with STAY option

- TMs with a 2-way infinite tape

> TMs with multiple tapes / heads
- Non-Deterministic TMs

Alternative TM Definitions

» Turing Machines with a “STAY” option

- Allows the tape head to stay where it is
- 0:QxT—=QxTIx{R, L, S}

» How could you simulate this feature with an
original TM?
- We can just move right and then back left

> In more detail:

- For any STAY case (and there can be only finite)

- Create a new state that we will move to when we move to the
right.

- From that state, have it automatically transition back to the left
and to the desired state on any tape symbol

Alternative TM Definitions

» TM with a two-way infinite tape

» How could you simulate this feature with
the original TM?

- Two different possibilities

- Map the two-way tape so that everything right of the
start point maps to even locations on the one-way
tape, and everything to the left of the start point
maps to odd locations on the one-way tape

- Ignore the possibility of going left of start. When it
needs to happen, enter a dedicated set of states that
shift everything on the tape one spot to the right, put

in a blank at the left, then continue.

Alternative TM Definitions

» TM with multiple tapes and heads
e QxIM—=QxIMx{R, L}
» How could you simulate this feature with

the original TM?

- Basic idea:
- Define a special symbol on the tape that will delimit
one of the multi-tapes from the next.
- E.g. #0011 1#abba#ijk# using # to delimit the tapes
- Use a marking (mark one symbol in each represented
tape) to indicate the current location of each tape head

- Shift things to the right as necessary to make room
when a tape has to move beyond its current boundaries

Aside - “Marking” with a TM

» For each symbol in the alphabet, have a
corresponding “marked” symbol in the tape
alphabet

» The machine can easily assess whether a
given symbol is a marked symbol, and alter
as desired

» The marking allows the original symbol to be

recovered
> |t’s not the same as “crossing it out”

m L —

TM with Multiple Tapes

Non-Deterministic TM

» Basic TM in the book is deterministic
» Can define a non-deterministic TM

» Non-deterministic TM

- Machine has a choice of moves
> 3: QXTI —=PQXxT x{R, L}

o For a string w

- As long as there is one path that causes the TM to halt in the
accept state, w is accepted.

Non-Deterministic TM

» Theorem 3.16: Every non-deterministic TM
has an equivalent deterministic TM

Non-Deterministic TM

» Why they are equivalent
- Given an NDTM, it is possible to construct a single
multi-taped DTM that accepts the same language
(and we now know this is equivalent to our original

TM):

> Basic idea:
- Think of the NDTM as a tree with root node at the start.
- At every move, the tree can split into O or more
branches (there will be some maximum number of
possible splits)
- Have the DTM simulate all paths of the NDTM

Non-Deterministic TM

» If any of the NDTM paths halts and accepts,
so too does the DTM

» How should the DTM go about simulating all

the paths (searching the tree)?
- Breadth first search or
- Depth first search

- Breadth first search guarantees that if there is an
accepting path, it will eventually find it, because each
successive level of the tree has finite paths to consider.

- Depth first search might wander down an infinitely
looping branch and never make it to an existing
accepting branch

Non-Deterministic TM

» Construction of DTM

» Use a 3 tape TM
- Tape 1: input tape
- Contains the input to be simulated
- Tape 2: simulation tape
- Simulates a branch of computation of the NDTM
- Tape 3: address tape

- Gives an encoding of the path from root to current
node in the NDTM to simulate.

Non-Deterministic TM

This starts out the same as
the input tape, but changes
according to the current
branch being simulated

0|1|0|u| ... inputtape /
x|#|0 |1

x |u| ... simulation tape

2|13(3|2(3|1]2|1(1|3|u|... addresstape

This indicates the sequence of branching
moves to take for this branch, starting from
the root (take the first branch out of the root;
take the second branch from that node; ...)

Non-Deterministic TM

» Running the machine:

1.
2.
3. Simulate machine on tape 2...making non-

Initially tape 1 contains input, 2&3 empty
Copy tape 1 to tape 2

deterministic choices based on sequence on tape
3. |If accept, then accept

. Replace tape 3 with next “path” to consider and

repeat steps 1-4.

. If all paths reject (i.e. the NDTM always halts),

then halt and reject.

p—

Non-Deterministic TM
» Implications of NDTM

- A language is Turing-recognizable if and only if
some NDTM recognizes it

- A language is decidable if and only if some NDTM
decides it.

Summary

» So in short...the following are equivalent:
- Deterministic Turing Machines (our original)
> Non-Deterministic Turing Machines

> Turing Mac
> Turing Mac
> Turing Mac

nines wit
nines wit

nines wit

p—

n a 2-way infinite tape
n multiple tapes / heads

n a STAY option

Church-Turing Thesis

The Church-Turing Thesis (1936)

» “Any algorithmic procedure that can be
carried out by a human or group of humans
can be carried out by some Turing Machine”
- Equating algorithm with runningon a T™M

Algorithms

» An algorithm
> Collection of instructions
> Procedure
- Recipe

» In computation, equivalent with running on a
Turing machine.

Algorithms and Turing Machines

» An algorithm always terminates

» A semi-algorithm may go into an infinite loop
on inputs that are not in the language

» Church-Turing Thesis says that:

- A language is algorithmically solvable if and only if
it is Turing-decidable (all inputs halt)

- A language has a semi-algorithm if and only if it is
Turing-recognizable.

m L —

Algorithms and Turing Machines

» What does it mean to say that “a language is
algorithmically solvable”
- Language is a set of strings
- We can cast our problems that we want to solve in
terms of strings that are accepted or rejected

- Frame the problem as a decision problem with a yes /
no answer

- Instances of the problem get encoded as strings

- The language corresponds to encodings of the
problem that have “yes” answers

- The problem is algorithmically solvable if we can

define a TM that correctly accepts only those strings

Algorithms and Turing Machines

» Running algorithms on objects:
- TMs take strings as input.
- For running “algorithms” on other objects,
- Must encode the object as a string.

- Any decent encoding will do.
- When running TMs on objects, it is assumed that decoding
gets performed by the TM and that input is valid.

> Notation:
- If O is an object to be input to a TM, <O> is the encoded
object.
- If Oy, O,, ..., O, are multiple objects to be used as input to a

™™, <0,, 0,, ..., O, > is the encoded list of objects.

Example

» Let A be the set of strings representing
undirected graphs that are connected.

> In a connected graph, every node can be reached
from every other node.

- A ={<G>| G is a connected undirected graph }

p—

Example

» First we need an encoding.

Example

High level description of a TM, M, that decides A:

First thing M must do is check validity of format of the input.
Reject if input is invalid. (This step is usually implicit in the TM
description.)

On input <G>, where G is a graph:

.Select first node of G and mark it
.Repeat the following stage until no new nodes are marked:
.For each node in G, mark it if attached via an edge to a marked

nhode.

.Scan nodes of G to see if all are marked. If yes, accept, if no,

reject.
This is the notation we will use to
represent high-level TM descriptions

Note about Encoding as a String

» We encoded a graph as a string in the
previous example for the TM to read as input

» In fact, strings can easily be used to

represent:

> Polynomials

- Graphs

o Grammars

- Automata

- Combinations of these things

» We'll be considering many of these objects as

our starting point now

