
TM Variants 



}  A Turing Machine consists of: 
◦  A finite state machine 
◦  An input tape 
◦  A movable read/write tape head 

}  A move of a Turing Machine 
◦  Read the symbol on the tape at the current 

position of the tape head 
◦  Change the symbol on the tape at the current 

position of the tape head 
◦  Move the tape head 
◦  Change the state of the machine based on current 

state and symbol read 



}  A note about the book’s definition 
�  TMs are deterministic 
�  Each input transitions to one (not multiple) output 
�  No ε-transitions 

�  That said, for all states where transitions are not 
defined: 
�  it is assumed there is a transition to the reject state. 



}  Running a Turing Machine 
◦  The execution of a TM can result in 3 possible 

cases: 
�  Accept 

�  The machine halts in the accepting state 
�  Non-accept 

�  The machine halts in the rejecting state 
�  The machine goes into an “infinite loop” 



}  Any language that is recognized by some Turing 
Machine is said to be Turing-recognizable. 
◦  The Turing Machine may loop on some rejected strings 

◦  Sometime termed recursively enumerable in other books. 

}  A language is Turing-decidable (or just decidable) 
if some Turing Machine decides it 
◦  It is recognized by a Turing Machine that halts on all input 

�  No infinite loops 

◦  Sometimes termed a recursive language in other books. 



}  At this point, we are going to leave behind the 
formal description of Turing Machines. 

}  We will use implementation and high-level 
descriptions to talk about what we want a Turing 
Machine to do. 

}  Concepts will be more abstract. 

}  We’ll be looking more big picture at what Turing 
Machines can do.  What type of problems can we 
solve algorithmically. 



}  Different levels for describing algorithms: 
◦  Formal Description 
�  Define the states and transitions of a TM 

◦  Implementation Description 
�  English prose that describes how the TM works. 

◦  High-Level Description 
�  English prose that describes the algorithm (no mention 

of TM implementation). 



}  There are many equivalent ways to define a TM 
◦  Each equivalent representation recognizes the same class of 

languages and decides the same class of languages 
◦  We’ll conclude that adding bells and whistles to our basic 

TM won’t give it any extra problem-solving power 

}  Today we will look at a few that the book mentions 
(and doesn’t mention): 
◦  TM with STAY option 
◦  TMs with a 2-way infinite tape 
◦  TMs with multiple tapes / heads 
◦  Non-Deterministic TMs 



}  Turing Machines with a “STAY” option 
◦  Allows the tape head to stay where it is 
◦  δ: Q x Γ → Q x Γ x {R, L, S} 

}  How could you simulate this feature with an 
original TM? 
◦  We can just move right and then back left 
◦  In more detail: 

�  For any STAY case (and there can be only finite) 
�  Create a new state that we will move to when we move to the 

right. 
�  From that state, have it automatically transition back to the left 

and to the desired state on any tape symbol 



}  TM with a two-way infinite tape 

}  How could you simulate this feature with 
the original TM? 
◦  Two different possibilities 
�  Map the two-way tape so that everything right of the 

start point maps to even locations on the one-way 
tape, and everything to the left of the start point 
maps to odd locations on the one-way tape 

�  Ignore the possibility of going left of start.  When it 
needs to happen, enter a dedicated set of states that 
shift everything on the tape one spot to the right, put 
in a blank at the left, then continue. 



}  TM with multiple tapes and heads 
◦  δ: Q x Γn → Q x Γn x {R, L}n 

}  How could you simulate this feature with 
the original TM? 
◦  Basic idea: 
�  Define a special symbol on the tape that will delimit 

one of the multi-tapes from the next. 
�  E.g. #00111#abba#ijk# using # to delimit the tapes 

�  Use a marking (mark one symbol in each represented 
tape) to indicate the current location of each tape head 

�  Shift things to the right as necessary to make room 
when a tape has to move beyond its current boundaries 



}  For each symbol in the alphabet, have a 
corresponding “marked” symbol in the tape 
alphabet 

}  The machine can easily assess whether a 
given symbol is a marked symbol, and alter 
as desired 

}  The marking allows the original symbol to be 
recovered 
◦  It’s not the same as “crossing it out” 





}  Basic TM in the book is deterministic 
}  Can define a non-deterministic TM 

}  Non-deterministic TM 
◦  Machine has a choice of moves 
◦  δ: Q x Γ → P(Q x Γ x {R, L}) 

◦  For a string w 
�  As long as there is one path that causes the TM to halt in the 

accept state, w is accepted. 



}  Theorem 3.16:  Every non-deterministic TM 
has an equivalent deterministic TM 



}  Why they are equivalent 
◦  Given an NDTM, it is possible to construct a single 

multi-taped DTM that accepts the same language 
(and we now know this is equivalent to our original 
TM): 

◦  Basic idea: 
�  Think of the NDTM as a tree with root node at the start. 
�  At every move, the tree can split into 0 or more 

branches (there will be some maximum number of 
possible splits) 

�  Have the DTM simulate all paths of the NDTM  



}  If any of the NDTM paths halts and accepts, 
so too does the DTM 

}  How should the DTM go about simulating all 
the paths (searching the tree)? 
◦  Breadth first search or 
◦  Depth first search 
�  Breadth first search guarantees that if there is an 

accepting path, it will eventually find it, because each 
successive level of the tree has finite paths to consider. 

�  Depth first search might wander down an infinitely 
looping branch and never make it to an existing 
accepting branch 



}  Construction of DTM 
}  Use a 3 tape TM 
◦  Tape 1: input tape 
�  Contains the input to be simulated 
◦  Tape 2: simulation tape 
�  Simulates a branch of computation of the NDTM 
◦  Tape 3: address tape 
�  Gives an encoding of the path from root to current 

node in the NDTM to simulate. 



This starts out the same as 
the input tape, but changes 
according to the current 
branch being simulated 

This indicates the sequence of branching 
moves to take for this branch, starting from 
the root (take the first branch out of the root; 
take the second branch from that node; …) 



}  Running the machine: 
1.  Initially tape 1 contains input, 2&3 empty 
2.  Copy tape 1 to tape 2 
3.  Simulate machine on tape 2…making non-

deterministic choices based on sequence on tape 
3.   If accept, then accept 

4.  Replace tape 3 with next “path” to consider and 
repeat steps 1-4.  

5.  If all paths reject (i.e. the NDTM always halts), 
then halt and reject. 



}  Implications of NDTM 

◦  A language is Turing-recognizable if and only if 
some NDTM recognizes it 

◦  A language is decidable if and only if some NDTM 
decides it. 



}  So in short…the following are equivalent: 
◦  Deterministic Turing Machines (our original) 
◦  Non-Deterministic Turing Machines 
◦  Turing Machines with a 2-way infinite tape 
◦  Turing Machines with multiple tapes / heads 
◦  Turing Machines with a STAY option 





}  “Any algorithmic procedure that can be 
carried out by a human or group of humans 
can be carried out by some Turing Machine” 
◦  Equating algorithm with running on a TM 



}  An algorithm  
◦  Collection of instructions 
◦  Procedure 
◦  Recipe 

}  In computation, equivalent with running on a 
Turing machine.   



}  An algorithm always terminates 
}  A semi-algorithm may go into an infinite loop 

on inputs that are not in the language 

}  Church-Turing Thesis says that: 
◦  A language is algorithmically solvable if and only if 

it is Turing-decidable (all inputs halt) 
◦  A language has a semi-algorithm if and only if it is 

Turing-recognizable.  



}  What does it mean to say that “a language is 
algorithmically solvable” 
◦  Language is a set of strings 
◦  We can cast our problems that we want to solve in 

terms of strings that are accepted or rejected 
�  Frame the problem as a decision problem with a yes / 

no answer 
�  Instances of the problem get encoded as strings 
�  The language corresponds to encodings of the 

problem that have “yes” answers 
�  The problem is algorithmically solvable if we can 

define a TM that correctly accepts only those strings 
that correspond to “yes” occurrences and rejects 
(without looping) all others 



}  Running algorithms on objects: 
◦  TMs take strings as input. 
◦  For running “algorithms” on other objects,  
�  Must encode the object as a string. 
�  Any decent encoding will do. 
�  When running TMs on objects, it is assumed that decoding 

gets performed by the TM and that input is valid. 

◦  Notation: 
�  If O is an object to be input to a TM, <O> is the encoded 

object. 
�  If O1, O2, …, On are multiple objects to be used as input to a 

TM, <O1, O2, …, On > is the encoded list of objects. 



}  Let A be the set of strings representing 
undirected graphs that are connected. 
◦  In a connected graph, every node can be reached 

from every other node. 

◦  A = {<G>| G is a connected undirected graph } 



}  First we need an encoding. 
 



}  High level description of a TM, M, that decides A: 

}  First thing M must do is check validity of format of the input.  
Reject if input is invalid.  (This step is usually implicit in the TM 
description.) 

}  On input <G>, where G is a graph: 
1. Select first node of G and mark it 
2. Repeat the following stage until no new nodes are marked: 
3. For each node in G, mark it if attached via an edge to a marked 

node. 
4. Scan nodes of G to see if all are marked. If yes, accept, if no, 

reject. 
This is the notation we will use to 
represent high-level TM descriptions 



}  We encoded a graph as a string in the 
previous example for the TM to read as input 

}  In fact, strings can easily be used to 
represent: 
◦  Polynomials 
◦  Graphs 
◦  Grammars 
◦  Automata 
◦  Combinations of these things 

}  We’ll be considering many of these objects as 
our starting point now 


