Currently Our Picture Looks Like

Context Free Languages

Deterministic Context Free Languages

Regular Languages

Finite Languages

We're going to start to look at languages out here

The Turing Machine

- We investigate the next (and final) classes of languages by first considering the machine
 - Turing Machine
 - Developed by Alan Turing in 1936
 - More than just recognizing languages
 - Foundation for modern theory of computation

The Turing Machine

Motivating idea

- Build a theoretical "human computer"
- Likened to a human with a paper and pencil that can solve problems in an algorithmic way
- Can do everything that a real computer can do
- The theoretical machine provides a means to determine:
 - If an algorithm or procedure exists for a given problem
 - What that algorithm or procedure looks like
 - How long it would take to run this algorithm or procedure

The Church–Turing Thesis (1936)

- * "Any algorithmic procedure that can be carried out by a human or group of humans can be carried out by some Turing Machine"
 - Equating <u>algorithm</u> with <u>running on a TM</u>

- A Turing Machine consists of:
 - A finite state machine
 - An input tape (infinite to the right)
 - A movable read/write tape head
- A move of a Turing Machine
 - Read the character on the tape at the current position of the tape head
 - Change the character on the tape at the current position of the tape head
 - Move the tape head
 - Change the state of the machine based on current state and character read

- Tape that holds symbol string
- Movable tape head that reads and writes symbols
- Machine that changes state based on current state and what symbol is read

• Let's formalize this:

- A Turing Machine M is a 7-tuple:
- $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where
 - Q = a finite set of states
 - $\Sigma =$ input alphabet (symbols initially on the tape, not including a special blank symbol \sqcup)
 - Γ = tape alphabet (symbols that can be written onto the tape. Includes symbols from Σ . Can include \sqcup)
 - $q_0 \in Q = start state$
 - $q_{accept} \in Q = accept state$
 - $q_{reject} \in Q = reject \text{ state } (q_{reject} \neq q_{accept})$
 - $\delta =$ transition function

- Transition function:
 - $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, L\}$
 - Input:
 - Current state
 - Tape symbol read at current position of tape head
 - Output:
 - State in which to move the machine
 - Tape symbol to write at the current position of the tape head
 - Direction in which to move the tape head (R = right, L = left)

Transition Function

Note, Sipser uses shorthand to indicate case when tape is not changed: $a \rightarrow R$ Also, for multiple symbols with common behavior : $a,b,c \rightarrow R$

Configuration of a TM

• Current configuration of a TM represented as:

1011q₇01111

(Figure 3.4 in Sipser)

- We say configuration C₁ yields configuration C₂ if the Turing machine can legally go from C₁ to C₂ in one move. We indicate:
 - uaq_ibv yields uq_jacv if
 - $\delta(q_i,b) = (q_j,c,L)$
 - uaq_ibv yields uacq_iv if
 - $\delta(q_i,b) = (q_j,c,R)$
 - We can write $C_1 \rightarrow C_2$
 - We can write $C_1 \rightarrow^* C_k$ to indicate C_1 yields C_k in
 - k–1 steps

- Start configuration:
 - To run an input string w on a TM,
 - Start in the starting state
 - Place the string on the tape
 - Place the head at the start of this string:
 - Configuration: $q_0 w$

• (By definition, trying to move left past the left edge of the tape results in staying in the same position.)

- Accepting or Rejecting a string
 - An accepting configuration is a configuration with state q_{accept}
 - A rejecting configuration is a configuration with state q_{reject}
 - The accepting and rejecting configurations are exactly the *halting configurations*. They do not yield further configurations.

- Accepting a string
 - A Turing Machine, M, accepts input w if
 - $C_1 \rightarrow {}^*C_k$, where C_1 is the start configuration of M on input w and C_k is an accepting configuration
 - The collection of strings that M accepts is the language of M

- Running a Turing Machine
 - The execution of a TM can result in 3 possible cases:
 - Accept
 - The machine halts in the accepting state
 - Non-accept
 - The machine halts in the reject state
 - The machine goes into an "infinite loop"

- Any language that is recognized by some Turing Machine is said to be <u>Turing-recognizable</u>.
 - The Turing Machine may loop on some rejected strings
 - Sometimes termed **recursively enumerable** in other books.
- A language is <u>Turing-decidable</u> (or just decidable) if some Turing Machine decides it
 - It is recognized by a Turing Machine that halts on all input
 - No infinite loops
 - Sometimes termed a <u>recursive</u> language in other books.

Example – Sipser ex. 3.9

- ▶ $B = \{w \# w | w \in \{0,1\}^*\}$
- Basic idea for TM decider
 - 1. Read first unmarked symbol...mark it.
 - 2. "Remember if a 0 or 1"
 - 3. Move to first unmarked symbol after the #
 - 4. If doesn't match remembered symbol then fail.
 - 5. Otherwise mark.
 - 6. Rewind to start of string.
 - 7. Repeat until all 0s and 1s are marked.

Example

Example 3.7 in book

$$A = \{0^{2^n} \mid n \ge 0\}$$

- Language of all strings of 0's with length a power of 2.
- Build a TM that will <u>decide</u> if a string w is in the language.

Example

Example 3.7 in book

$$A = \{0^{2^n} \mid n \ge 0\}$$

Basic idea:

- 1. Sweep L to R, crossing off every other 0
- 2. If single 0, then accept
- 3. If more than one 0 but odd # of 0's reject
- 4. Return to left hand end of tape
- 5. Goto 1.

Example

Example 3.7 in text

Note slightly different notation here. Transition is indicated as X:Y, R indicating symbol X at tape head is replaced by Y and head moves to the right

> Note also that this solution assumes that there exists a blank space to the left of the beginning of the input sequence. While this is ultimately equivalent to Sipser's definition, he has a slightly different solution in the book because he assumes that the input tape begins with the input sequence, and there is nothing to the left of it.