


Regular Languages 

Finite 
Languages 

Deterministic Context Free Languages 

Context Free Languages 

We’re going to start to look at 
languages out here 



}  We investigate the next (and final) classes of 
languages by first considering the machine  
◦  Turing Machine 
�  Developed by Alan Turing in 1936 
�  More than just recognizing languages 
�  Foundation for modern theory of computation 



}  Motivating idea 
◦  Build a theoretical “human computer” 
◦  Likened to a human with a paper and pencil that 

can solve problems in an algorithmic way 
◦  Can do everything that a real computer can do 
◦  The theoretical machine provides a means to 

determine: 
�  If an algorithm or procedure exists for a given problem 
�  What that algorithm or procedure looks like 
�  How long it would take to run this algorithm or procedure 



}  “Any algorithmic procedure that can be 
carried out by a human or group of humans 
can be carried out by some Turing Machine” 

◦  Equating algorithm with running on a TM 



}  A Turing Machine consists of: 
◦  A finite state machine 
◦  An input tape (infinite to the right) 
◦  A movable read/write tape head 

}  A move of a Turing Machine 
◦  Read the character on the tape at the current 

position of the tape head 
◦  Change the character on the tape at the current 

position of the tape head 
◦  Move the tape head 
◦  Change the state of the machine based on current 

state and character read 



}  Tape that holds 
symbol string 

}  Movable tape head 
that reads and 
writes symbols 

}  Machine that 
changes state based 
on current state and 
what symbol is read 

... 
Input tape (input/memory) 

State 
Machine 

Tape head 



}  Let’s formalize this: 
◦  A Turing Machine M is a 7-tuple: 
◦  M = (Q, Σ, Γ , δ, q0, qaccept, qreject) where 
�  Q = a finite set of states  
�  Σ = input alphabet  (symbols initially on the tape, not 

including a special blank symbol ⊔ ) 
�  Γ = tape alphabet (symbols that can be written onto the 

tape. Includes symbols from Σ. Can include ⊔) 
�  q0 ∈ Q = start state 
�  qaccept ∈ Q = accept state 
�  qreject ∈ Q = reject state (qreject ≠ qaccept ) 
�  δ = transition function 



}  Transition function: 
◦  δ: Q x Γ → Q x Γ x {R, L} 

◦  Input: 
�  Current state 
�  Tape symbol read at current position of tape head 
◦  Output: 
�  State in which to move the machine 
�  Tape symbol to write at the current position of the tape 

head 
�  Direction in which to move the tape head (R = right, L = 

left) 



}  Transition Function 

q0 q1 
a → b, R 

Symbol at 
current tape 
head 
position 

Symbol to 
write at the 
current head 
position 

Direction in 
which to 
move the 
tape head 

Note, Sipser uses shorthand to indicate case 
when tape is not changed:  a → R 
Also, for multiple symbols 
with common behavior    :  a,b,c → R 



}  Configuration of a TM 
◦  Current configuration of a TM represented as:  

 
 
     uqv                            1011q701111 

Contents of 
tape before 
tape head 

Current state 

Contents of 
tape at and 
after tape 
head (until all 
blanks) 

(Figure 3.4 in Sipser) 



}  We say configuration C1 yields configuration C2 if 
the Turing machine can legally go from C1 to C2 in 
one move. We indicate: 

◦  uaqibv yields uqjacv if 
�  δ(qi,b) = (qj,c,L)  
◦  uaqibv yields uacqjv if 
�  δ(qi,b) = (qj,c,R)  

◦  We can write C1 → C2 
◦  We can write C1 →* Ck to indicate C1 yields Ck in 

k-1 steps 



}  Start configuration: 
◦  To run an input string w on a TM,  
�  Start in the starting state 
�  Place the string on the tape 
�  Place the head at the start of this string: 

�  Configuration:  q0w 

�  (By definition, trying to move left past the left edge of 
the tape results in staying in the same position.) 



}  Accepting or Rejecting a string 

◦  An accepting configuration is a configuration with 
state qaccept 

◦  A rejecting configuration is a configuration with 
state qreject 

◦  The accepting and rejecting configurations are 
exactly the halting configurations.  They do not 
yield further configurations. 



}  Accepting a string 

◦  A Turing Machine, M, accepts input w if  
�  C1 →* Ck, where C1 is the start configuration of M on 

input w and Ck is an accepting configuration 

◦  The collection of strings that M accepts is the 
language of M 



}  Running a Turing Machine 
◦  The execution of a TM can result in 3 possible 

cases: 
�  Accept 

�  The machine halts in the accepting state 
�  Non-accept 

�  The machine halts in the reject state 
�  The machine goes into an “infinite loop” 



}  Any language that is recognized by some Turing 
Machine is said to be Turing-recognizable. 
◦  The Turing Machine may loop on some rejected strings 

◦  Sometimes termed recursively enumerable in other books. 

}  A language is Turing-decidable (or just decidable) 
if some Turing Machine decides it 
◦  It is recognized by a Turing Machine that halts on all input 

�  No infinite loops 

◦  Sometimes termed a recursive language in other books. 



}  B = {w#w | w ∈ {0,1}* } 

}  Basic idea for TM decider 
1.  Read first unmarked symbol…mark it. 
2.  “Remember if a 0 or 1” 
3.  Move to first unmarked symbol after the # 
4.  If doesn’t match remembered symbol then fail. 
5.  Otherwise mark. 
6.  Rewind to start of string. 
7.  Repeat until all 0s and 1s are marked. 



}  Example 3.7 in book 

◦  Language of all strings of 0’s with length a 
power of 2. 

◦  Build a TM that will decide if a string w is in 
the language. 

 

€ 

A = {02
n

| n ≥ 0}



}  Example 3.7 in book 

}  Basic idea: 
1.  Sweep L to R, crossing off every other 0 
2.  If single 0, then accept 
3.  If more than one 0 but odd # of 0’s reject 
4.  Return to left hand end of tape 
5.  Goto 1. 

€ 

A = {02
n

| n ≥ 0}



}  Example 3.7 in text Note slightly different notation here.  
Transition is indicated as X:Y, R 
indicating symbol X at tape head is 
replaced by Y and head moves to the 
right 

Note also that this solution 
assumes that there exists a 
blank space to the left of 
the beginning of the input 
sequence.  While this is 
ultimately equivalent to 
Sipser’s definition, he has a 
slightly different solution in 
the book because he 
assumes that the input 
tape begins with the input 
sequence, and there is 
nothing to the left of it. 


