

Regular Languages

Finite
Languages

Deterministic Context Free Languages

Context Free Languages

We’re going to start to look at
languages out here

}  We investigate the next (and final) classes of
languages by first considering the machine
◦  Turing Machine
�  Developed by Alan Turing in 1936
�  More than just recognizing languages
�  Foundation for modern theory of computation

}  Motivating idea
◦  Build a theoretical “human computer”
◦  Likened to a human with a paper and pencil that

can solve problems in an algorithmic way
◦  Can do everything that a real computer can do
◦  The theoretical machine provides a means to

determine:
�  If an algorithm or procedure exists for a given problem
�  What that algorithm or procedure looks like
�  How long it would take to run this algorithm or procedure

}  “Any algorithmic procedure that can be
carried out by a human or group of humans
can be carried out by some Turing Machine”

◦  Equating algorithm with running on a TM

}  A Turing Machine consists of:
◦  A finite state machine
◦  An input tape (infinite to the right)
◦  A movable read/write tape head

}  A move of a Turing Machine
◦  Read the character on the tape at the current

position of the tape head
◦  Change the character on the tape at the current

position of the tape head
◦  Move the tape head
◦  Change the state of the machine based on current

state and character read

}  Tape that holds
symbol string

}  Movable tape head
that reads and
writes symbols

}  Machine that
changes state based
on current state and
what symbol is read

...
Input tape (input/memory)

State
Machine

Tape head

}  Let’s formalize this:
◦  A Turing Machine M is a 7-tuple:
◦  M = (Q, Σ, Γ , δ, q0, qaccept, qreject) where
�  Q = a finite set of states
�  Σ = input alphabet (symbols initially on the tape, not

including a special blank symbol ⊔)
�  Γ = tape alphabet (symbols that can be written onto the

tape. Includes symbols from Σ. Can include ⊔)
�  q0 ∈ Q = start state
�  qaccept ∈ Q = accept state
�  qreject ∈ Q = reject state (qreject ≠ qaccept)
�  δ = transition function

}  Transition function:
◦  δ: Q x Γ → Q x Γ x {R, L}

◦  Input:
�  Current state
�  Tape symbol read at current position of tape head
◦  Output:
�  State in which to move the machine
�  Tape symbol to write at the current position of the tape

head
�  Direction in which to move the tape head (R = right, L =

left)

}  Transition Function

q0 q1
a → b, R

Symbol at
current tape
head
position

Symbol to
write at the
current head
position

Direction in
which to
move the
tape head

Note, Sipser uses shorthand to indicate case
when tape is not changed: a → R
Also, for multiple symbols
with common behavior : a,b,c → R

}  Configuration of a TM
◦  Current configuration of a TM represented as:

 uqv 1011q701111

Contents of
tape before
tape head

Current state

Contents of
tape at and
after tape
head (until all
blanks)

(Figure 3.4 in Sipser)

}  We say configuration C1 yields configuration C2 if
the Turing machine can legally go from C1 to C2 in
one move. We indicate:

◦  uaqibv yields uqjacv if
�  δ(qi,b) = (qj,c,L)
◦  uaqibv yields uacqjv if
�  δ(qi,b) = (qj,c,R)

◦  We can write C1 → C2
◦  We can write C1 →* Ck to indicate C1 yields Ck in

k-1 steps

}  Start configuration:
◦  To run an input string w on a TM,
�  Start in the starting state
�  Place the string on the tape
�  Place the head at the start of this string:

�  Configuration: q0w

�  (By definition, trying to move left past the left edge of
the tape results in staying in the same position.)

}  Accepting or Rejecting a string

◦  An accepting configuration is a configuration with
state qaccept

◦  A rejecting configuration is a configuration with
state qreject

◦  The accepting and rejecting configurations are
exactly the halting configurations. They do not
yield further configurations.

}  Accepting a string

◦  A Turing Machine, M, accepts input w if
�  C1 →* Ck, where C1 is the start configuration of M on

input w and Ck is an accepting configuration

◦  The collection of strings that M accepts is the
language of M

}  Running a Turing Machine
◦  The execution of a TM can result in 3 possible

cases:
�  Accept

�  The machine halts in the accepting state
�  Non-accept

�  The machine halts in the reject state
�  The machine goes into an “infinite loop”

}  Any language that is recognized by some Turing
Machine is said to be Turing-recognizable.
◦  The Turing Machine may loop on some rejected strings

◦  Sometimes termed recursively enumerable in other books.

}  A language is Turing-decidable (or just decidable)
if some Turing Machine decides it
◦  It is recognized by a Turing Machine that halts on all input

�  No infinite loops

◦  Sometimes termed a recursive language in other books.

}  B = {w#w | w ∈ {0,1}* }

}  Basic idea for TM decider
1.  Read first unmarked symbol…mark it.
2.  “Remember if a 0 or 1”
3.  Move to first unmarked symbol after the #
4.  If doesn’t match remembered symbol then fail.
5.  Otherwise mark.
6.  Rewind to start of string.
7.  Repeat until all 0s and 1s are marked.

}  Example 3.7 in book

◦  Language of all strings of 0’s with length a
power of 2.

◦  Build a TM that will decide if a string w is in
the language.

€

A = {02
n

| n ≥ 0}

}  Example 3.7 in book

}  Basic idea:
1.  Sweep L to R, crossing off every other 0
2.  If single 0, then accept
3.  If more than one 0 but odd # of 0’s reject
4.  Return to left hand end of tape
5.  Goto 1.

€

A = {02
n

| n ≥ 0}

}  Example 3.7 in text Note slightly different notation here.
Transition is indicated as X:Y, R
indicating symbol X at tape head is
replaced by Y and head moves to the
right

Note also that this solution
assumes that there exists a
blank space to the left of
the beginning of the input
sequence. While this is
ultimately equivalent to
Sipser’s definition, he has a
slightly different solution in
the book because he
assumes that the input
tape begins with the input
sequence, and there is
nothing to the left of it.

