

}  Let L be a regular language
}  Then there exists a constant p (which varies

for different languages), such that for every
string s ∈ L with |s| ≥ p, s can be expressed
as s = xyz such that:
◦  |y| > 0
◦  |xy| ≤ p
◦  For all k ≥ 0, the string xykz is also in L.

}  Consider a string s = a1a2a3…am ∈ L
}  Suppose s is a long string – comprising at

least as many symbols as the DFA for
language L has states
◦  At least one state must be visited twice

r0 ri
x = a1a2a3…ai

y = ai+1ai+2ai+3…aj

z = aj+1aj+2…am

}  Why can’t we use this same argument for
CFLs?
◦  Because PDAs involve the stack as well, and the

stack may be different when you return to the
repeated state

r0 ri
x = a1a2a3…ai

y = ai+1ai+2ai+3…aj

z = aj+1aj+2…am

}  With CFLs
◦  A string is represented by its derivation (or parse tree)

based on the productions (rules) of a CFG.
◦  The idea behind the Pumping Lemma for CFLs:

�  If a string is long enough, then at least one variable in its
derivation will have to be repeated along one of its parse tree
paths (from root node to leaf node).

�  We can repeatedly reapply productions for the repeated variable
and the resultant string will also be in the language

}  Example:
◦  S → fAb
◦  A → aC | d | ε
◦  C → cAc

}  Example string:
◦  facdcb

S

A b

a C

c A c

d

f

}  Idea – for a long
enough string,
eventually one of
the variables has
to repeat along
one of the paths
in the derivation
of that string

S

A b

a C

c A c

d

f

}  Why is this true?
◦  Suppose the grammar has V

variables (it must have some
finite number of variables)
◦  Identify the longest path in a

string’s parse tree derivation
◦  If this path is at least V+2

symbols long including the
terminal leaf node (i.e. the
depth of the tree is at least
V+1) then one of the
variables must repeat along
its path

�  (Pigeonhole property)

S

A b

a C

c A c

d

f

}  OK, so how long does the string
need to be to guarantee that
there is a path in its derivation
of depth at least V+1?
◦  Let K be the maximum length of any

string (variables + terminals) on the
right-hand side of any of the grammar
rules for the language
�  That means the parse tree can branch into at

most K children at each level
�  After V levels, the tree could have as many as KV

leaf nodes (terminals)
�  If there are more leaf nodes than KV (i.e. if the

string is longer than this many symbols), we
know there must be at least one path of depth at
least V+1

S

A b

a C

c A c

d

f

}  So what does this mean?
◦  There is some length, p, and it

may be a large number, but
that doesn’t matter, such that
any string in the grammar with
length at least p is guaranteed
to have a parse tree with a
variable that repeats along one
of its paths

◦  We’ll consider the parse tree
with the fewest nodes (in the
case of ambiguity and multiple
possible derivations)

S

A b

a C

c A c

d

f

}  Now consider dividing our string up into 5
pieces: uvxyz

}  u: everything that happens in the parse tree
to the left of the the first occurrence of the
repeat variable (f)

}  v: everything originating from the first
occurrence of the repeat variable, but left of
the second occurrence (ac)

}  x: everything originating from the second
occurrence of the repeat variable (d)

}  y: everything originating from the first
occurrence of the repeat variable, but right of
the second occurrence (c)

}  z: everything that happens in the parse tree
to the right of the first occurrence of the
repeat variable (b)

S

A b

a C

c A c

d

f

}  The string uvxyz is in the grammar
}  The string derived starting from the first

occurrence of the repeat variable is vxy
}  The string derived starting from the

second occurrence of the repeat variable
is x

}  Since a subtree rooted at the repeat
variable is a valid derivation based on the
grammar, we can swap out any subtree
rooted at a given repeat variable for
another subtree rooted at a different
occurrence of that same repeat variable
and the resulting string is still in the
grammar
◦  (swap out their corresponding strings)

S

A b

a C

c A c

d

f

}  uvxyz is a valid string
}  So is uv (vxy) yz
◦  Derived by replacing the

subtree rooted at the second
occurrence of the repeat
variable with the subtree
rooted at the first occurrence

}  So is uv (v (vxy) y) yz
}  So is u (x) z
◦  Derived by swapping in the

reverse direction

S

A b

a C

c A c

d

f

}  Any string of the form:
uvkxykz is a valid string in
the language (k ≥ 0)

}  Also can be shown
(technical details in the
book, not complicated):

}  |vy| > 0
}  |vxy| ≤ p

S

A b

a C

c A c

d

f

}  That is the pumping lemma for
CFLs: for any CFL, there exists
a pumping length, p, such that
any string, s, in the language
of length at least p can be
broken up into five pieces
s = uvxyz such that:

}  uvkxykz (k ≥ 0) is in the
language

}  |vy| > 0
}  |vxy| ≤ p

S

A b

a C

c A c

d

f

Sipser’s visualization
of the pumping
lemma for CFLs

}  Just like with the pumping lemma for regular
languages, the real strength of the pumping lemma
for CFLs is proving that languages are not context-
free
◦  Proof by contradiction

�  Assume that the language to be tested is a CFL
�  Use the pumping lemma to come to a contradiction
�  Original assumption about the language being a CFL is false

}  You cannot prove a language to be a CFL using the
Pumping Lemma

}  Using the Pumping Lemma
◦  To show that a language L is not a CFL

�  Assume L is context-free
�  Choose an “appropriate” string s in L
�  Express s = uvxyz following rules of pumping lemma
�  Show that uvkxykz is not in L, for some k
�  The above contradicts the Pumping Lemma
�  Our assumption that L is context-free is wrong
�  L must not be context-free

}  Remember the wording of the lemma:
◦  FOR ALL strings s ∈ L that are long enough,
◦  THERE EXISTS a decomposition s = uvxyz
◦  Such that uvkxykz is in the language FOR ALL k ≥ 0 (and other

properties hold too)
}  So to show that a language is NOT a CFL by

contradiction, we assume that it is a CFL and then
show that:
◦  THERE EXISTS string s ∈ L that is long enough (just need 1!)
◦  NO MATTER how we decompose s = uvxyz (we have to cover

ALL legitimate decompositions!)
◦  uvkxykz is NOT in the language FOR SOME k ≥ 0 (we just have

to show 1 case that isn’t in the language!)

}  Example:
◦  L = { anbncn | n ≥ 0 }
◦  Strings of the form abc where number of a’s, b’s

and c’s are equal

◦  Assume that L is context-free. Then by the

pumping lemma all strings s in L with |s| ≥ p can
be expressed as s = uvxyz and
�  |vy| > 0
�  |vxy| ≤ p
�  For any k ≥ 0, uvkxykz ∈ L

}  Example
◦  L = { anbncn | n ≥ 0 }

◦  Choose an appropriate s = apbpcp = uvxyz
◦  Since |vxy| ≤ p then vxy must consist of
�  All a’s or all b’s or all c’s
�  Some a’s and some b’s
�  Some b’s and some c’s
◦  Since |vy| > 0, it must be contributing something

}  In all three cases
◦  uv2xy2z will not have an equal number of a’s b’s

and c’s.
◦  Pumping Lemma says uv2xy2z ∈ L
◦  Contradiction!
◦  Our original assumption must be wrong.

◦  L is not context-free.

}  By the same argument (same choice of s), we
can show that:

◦  L = { w ∈ { a,b,c}* | na(w) = nb(w) = nc(w) }

}  Is not context-free

}  Another Example:
◦  L = { aibjck | i < j and i < k }
◦  Number of a’s is less than the number of b’s and

also less than the number of c’s

◦  Assume that L is context-free. Then by the

pumping lemma all strings s in L with |s| ≥ p can
be expressed as s = uvxyz and
�  |vy| > 0
�  |vxy| ≤ p
�  For any k ≥ 0, uvkxykz ∈ L

}  Example
◦  L = { aibjck | i < j and i < k }

◦  Choose an appropriate s = apbp+1cp+1 = uvxyz
◦  Since |vxy| ≤ p then vxy must consist of
�  Case 1: All a’s or all b’s or all c’s
�  Case 2: Some a’s and some b’s
�  Case 3: Some b’s and some c’s

}  Let’s consider each case individually:
◦  Case 1: All a’s or all b’s or all c’s
�  If vxy consists of all a’s then uv2xy2z will contain at

least as many a’s as b’s
�  If vxy consists of all b’s then uv0xy0z will contain the

same number or fewer b’s than a’s
�  If vxy consists of all c’s then uv0xy0z will contain the

same number or fewer c’s than a’s

}  Let’s consider each case individually:
◦  Case 2: Some a’s and some b’s
�  If v and y together contain at least one a, then uv2xy2z

will contain at least as many a’s as c’s
�  If v and y together don’t contain at least one a, then they

contain at least one b, and nothing else, in which case
uv0xy0z will contain at least as many a’s as b’s

}  Let’s consider each case individually:
◦  Case 3: Some b’s and some c’s
�  If vxy consists of only b’s and c’s then uv0xy0z will

contain the same number or fewer c’s or b’s than a’s

}  In all cases
◦  We found a “pumped” (or unpumped) string that the

pumping lemma said should be in the language but that did
not maintain the relationship of a’s to b’s and c’s as
specified in the language.
◦  Contradiction!
◦  Our original assumption must be wrong.

◦  L is not context-free.

}  By the same argument (same choice of s), we
can show that:

◦  L = { w ∈ { a,b,c}* | na(w) < nb(w) and na(w) < nc(w) }

}  Is not context-free

}  As mentioned before
◦  Our basic PDA is non-deterministic
◦  Briefly, a deterministic PDA (DPDA) is one in which

there are no “choices” in the transitions
}  It turns out that PDAs are not equivalent to

DPDAs
◦  There are some context free languages that DPDAs

can not represent (e.g. palindromes)
�  This is different than the case with regular languages,

where DFA and NFA are equivalent

Regular Languages

Finite
Languages

Deterministic Context-Free Languages

Context-Free Languages
Non-Context-Free
Languages

}  We have already seen that CFLs are closed
under:
◦  Union
◦  Concatenation
◦  Kleene Star

}  Regular Languages are also closed under
◦  Intersection
◦  Complementation
◦  Difference

}  What about Context-Free Languages?

}  CFLs are not closed under intersection

◦  If L1 and L2 are CFLs then L1 ∩ L2 is not necessarily a
CFL.

◦  Example:
�  L1 = {aibjck | i < j }
�  L2 = {aibjck | i < k }

�  Are both CFLs

}  CFLs are not closed under intersection

L1 = {aibjck | i < j }

S → ABC
A → aAb | ε
B → bB | b
C → cC | ε

L2 = {aibjck | i < k }

S → AC
A → aAc | B
B → bB | ε
C → cC | c

}  CFLs are not closed under intersection
◦  L1 ∩ L2 = {aibjck | i < j and i < k }

◦  Which we just showed to be non-context-free.

}  What went wrong?
◦  Can’t we apply the same construction as we did for

the complement of RLs (Regular Languages)?
�  Reverse the accepting / non-accepting states

�  PDAs can “crash”.
�  i.e. Fail by having no place to go.
�  Making non-accepting states accepting will not handle

crashes.
�  (It will crash in both machines, so the string will not be

accepted in either case.)

�  (we saw this in homework for NFAs)

}  What went wrong?
◦  Can’t we apply the same construction as we did for

the intersection of RLs?
�  The states of M are an ordered pair (p, q) where p ∈ Q1

and q ∈ Q2
�  Informally, the states of M will represent the current

states of M1 and M2 at each simultaneous move of the
machines.

�  (Even ignoring for now the possibility of moving to
multiple states at once)

}  What went wrong?
◦  Can’t we apply the same construction as we did for

the intersection of RLs?
�  The problem is the stack.
�  Although we could try the same thing for PDAs and

have a combined machine keep track of where both
PDAs are at any one time…

�  We can’t keep track of what’s on both stacks at any
given time.

}  However, if one of the CFLs does not use the
stack (i.e. it is a DFA), then we can build a
PDA that accepts L1 ∩ L2.

}  In other words:
◦  If L1 is a context free language and L2 is a regular

language, then L1 ∩ L2 is context free.

◦  See Problem 2.18 (and answer) in the textbook

}  Summary
◦  CFLs are closed under
�  Union, Concatenation, Kleene Star
◦  CFLs are NOT closed under
�  Intersection, Difference, Complement
◦  But
�  The intersection of a CFL with a RL is a CFL

