


}  Let L be a regular language 
}  Then there exists a constant p (which varies 

for different languages), such that for every 
string s ∈ L with |s| ≥ p, s can be expressed 
as s = xyz such that: 
◦  |y| > 0 
◦  |xy| ≤ p 
◦  For all k ≥ 0, the string xykz is also in L. 



}  Consider a string s = a1a2a3…am ∈ L 
}  Suppose s is a long string – comprising at 

least as many symbols as the DFA for 
language L has states 
◦  At least one state must be visited twice 

r0 ri 
x = a1a2a3…ai 

y = ai+1ai+2ai+3…aj 

z = aj+1aj+2…am 



}  Why can’t we use this same argument for 
CFLs? 
◦  Because PDAs involve the stack as well, and the 

stack may be different when you return to the 
repeated state 

r0 ri 
x = a1a2a3…ai 

y = ai+1ai+2ai+3…aj 

z = aj+1aj+2…am 



}  With CFLs 
◦  A string is represented by its derivation (or parse tree) 

based on the productions (rules) of a CFG. 
◦  The idea behind the Pumping Lemma for CFLs: 

�  If a string is long enough, then at least one variable in its 
derivation will have to be repeated along one of its parse tree 
paths (from root node to leaf node). 

�  We can repeatedly reapply productions for the repeated variable 
and the resultant string will also be in the language 



}  Example: 
◦  S → fAb 
◦  A → aC | d | ε 
◦  C → cAc 

}  Example string: 
◦  facdcb 

S 

A b 

a C 

c A c 

d 

f 



}  Idea – for a long 
enough string, 
eventually one of 
the variables has 
to repeat along 
one of the paths 
in the derivation 
of that string 

S 

A b 

a C 

c A c 

d 

f 



}  Why is this true? 
◦  Suppose the grammar has V 

variables (it must have some 
finite number of variables) 
◦  Identify the longest path in a 

string’s parse tree derivation 
◦  If this path is at least V+2 

symbols long including the 
terminal leaf node (i.e. the 
depth of the tree is at least 
V+1) then one of the 
variables must repeat along 
its path 

�                         (Pigeonhole property) 

S 

A b 

a C 

c A c 

d 

f 



}  OK, so how long does the string 
need to be to guarantee that 
there is a path in its derivation 
of depth at least V+1? 
◦  Let K be the maximum length of any 

string (variables + terminals) on the 
right-hand side of any of the grammar 
rules for the language 
�  That means the parse tree can branch into at 

most K children at each level 
�  After V levels, the tree could have as many as KV 

leaf nodes (terminals) 
�  If there are more leaf nodes than KV (i.e. if the 

string is longer than this many symbols), we 
know there must be at least one path of depth at 
least V+1 

S 

A b 

a C 

c A c 

d 

f 



}  So what does this mean? 
◦  There is some length, p, and it 

may be a large number, but 
that doesn’t matter, such that 
any string in the grammar with 
length at least p is guaranteed 
to have a parse tree with a 
variable that repeats along one 
of its paths 

◦  We’ll consider the parse tree 
with the fewest nodes (in the 
case of ambiguity and multiple 
possible derivations) 

S 

A b 

a C 

c A c 

d 

f 



}  Now consider dividing our string up into 5 
pieces:  uvxyz 

}  u:  everything that happens in the parse tree 
to the left of the the first occurrence of the 
repeat variable (f) 

}  v: everything originating from the first 
occurrence of the repeat variable, but left of 
the second occurrence (ac) 

}  x: everything originating from the second 
occurrence of the repeat variable (d)   

}  y: everything originating from the first 
occurrence of the repeat variable, but right of 
the second occurrence (c) 

}  z:  everything that happens in the parse tree 
to the right of the first occurrence of the 
repeat variable (b) 

S 

A b 

a C 

c A c 

d 

f 



}  The string uvxyz is in the grammar 
}  The string derived starting from the first 

occurrence of the repeat variable is vxy 
}  The string derived starting from the 

second occurrence of the repeat variable 
is x 

}  Since a subtree rooted at the repeat 
variable is a valid derivation based on the 
grammar, we can swap out any subtree 
rooted at a given repeat variable for 
another subtree rooted at a different 
occurrence of that same repeat variable 
and the resulting string is still in the 
grammar 
◦  (swap out their corresponding strings) 

S 

A b 

a C 

c A c 

d 

f 



}  uvxyz is a valid string 
}  So is uv (vxy) yz 
◦  Derived by replacing the 

subtree rooted at the second 
occurrence of the repeat 
variable with the subtree 
rooted at the first occurrence 

}  So is uv (v (vxy) y) yz 
}  So is u (x) z 
◦  Derived by swapping in the 

reverse direction 

S 

A b 

a C 

c A c 

d 

f 



}  Any string of the form:  
uvkxykz is a valid string in 
the language (k ≥ 0) 

}  Also can be shown 
(technical details in the 
book, not complicated): 

}  |vy| > 0 
}  |vxy| ≤ p 

S 

A b 

a C 

c A c 

d 

f 



}  That is the pumping lemma for 
CFLs:  for any CFL, there exists 
a pumping length, p, such that 
any string, s, in the language 
of length at least p can be 
broken up into five pieces       
s = uvxyz such that: 

}  uvkxykz (k ≥ 0) is in the 
language 

}  |vy| > 0 
}  |vxy| ≤ p 

S 

A b 

a C 

c A c 

d 

f 



Sipser’s visualization 
of the pumping 
lemma for CFLs 



}  Just like with the pumping lemma for regular 
languages, the real strength of the pumping lemma 
for CFLs is proving that languages are not context-
free 
◦  Proof by contradiction 

�  Assume that the language to be tested is a CFL 
�  Use the pumping lemma to come to a contradiction 
�  Original assumption about the language being a CFL is false 

}  You cannot prove a language to be a CFL using the 
Pumping Lemma 



}  Using the Pumping Lemma 
◦  To show that a language L is not a CFL 

�  Assume L is context-free 
�  Choose an “appropriate” string s in L 
�  Express s = uvxyz following rules of pumping lemma 
�  Show that uvkxykz is not in L, for some k 
�  The above contradicts the Pumping Lemma 
�  Our assumption that L is context-free is wrong 
�  L must not be context-free 



}  Remember the wording of the lemma: 
◦  FOR ALL strings s ∈ L that are long enough, 
◦  THERE EXISTS a decomposition s = uvxyz 
◦  Such that uvkxykz is in the language FOR ALL k ≥ 0 (and other 

properties hold too) 
}  So to show that a language is NOT a CFL by 

contradiction, we assume that it is a CFL and then 
show that: 
◦  THERE EXISTS string s ∈ L that is long enough (just need 1!) 
◦  NO MATTER how we decompose s = uvxyz (we have to cover 

ALL legitimate decompositions!) 
◦  uvkxykz is NOT in the language FOR SOME k ≥ 0 (we just have 

to show 1 case that isn’t in the language!) 



}  Example: 
◦  L = { anbncn | n ≥ 0 } 
◦  Strings of the form abc where number of a’s, b’s 

and c’s are equal 
 
◦  Assume that L is context-free. Then by the 

pumping lemma all strings s in L with |s| ≥ p can 
be expressed as s = uvxyz and 
�  |vy| > 0 
�  |vxy| ≤ p 
�  For any k ≥ 0, uvkxykz ∈ L 



}  Example 
◦  L = { anbncn | n ≥ 0 } 

◦  Choose an appropriate s = apbpcp = uvxyz 
◦  Since |vxy| ≤ p then vxy must consist of 
�  All a’s or all b’s or all c’s 
�  Some a’s and some b’s 
�  Some b’s and some c’s 
◦  Since |vy| > 0, it must be contributing something 



}  In all three cases 
◦  uv2xy2z will not have an equal number of a’s b’s 

and c’s. 
◦  Pumping Lemma says uv2xy2z ∈ L 
◦  Contradiction! 
◦  Our original assumption must be wrong. 

◦  L is not context-free. 



}  By the same argument (same choice of s), we 
can show that: 

◦  L = { w ∈ { a,b,c}* | na(w) = nb(w) = nc(w) } 

}  Is not context-free 



}  Another Example: 
◦  L = { aibjck | i < j and i < k } 
◦  Number of a’s is less than the number of b’s and 

also less than the number of c’s 
 
◦  Assume that L is context-free. Then by the 

pumping lemma all strings s in L with |s| ≥ p can 
be expressed as s = uvxyz and 
�  |vy| > 0 
�  |vxy| ≤ p 
�  For any k ≥ 0, uvkxykz ∈ L 



}  Example 
◦  L = { aibjck | i < j and i < k } 

◦  Choose an appropriate s = apbp+1cp+1 = uvxyz 
◦  Since |vxy| ≤ p then vxy must consist of 
�  Case 1: All a’s or all b’s or all c’s 
�  Case 2: Some a’s and some b’s 
�  Case 3: Some b’s and some c’s 



}  Let’s consider each case individually: 
◦  Case 1: All a’s or all b’s or all c’s 
�  If vxy consists of all a’s then uv2xy2z will contain at 

least as many a’s as b’s 
�  If vxy consists of all b’s then uv0xy0z will contain the 

same number or fewer b’s than a’s 
�  If vxy consists of all c’s then uv0xy0z will contain the 

same number or fewer c’s than a’s 



}  Let’s consider each case individually: 
◦  Case 2: Some a’s and some b’s 
�  If v and y together contain at least one a, then uv2xy2z 

will contain at least as many a’s as c’s 
�  If v and y together don’t contain at least one a, then they 

contain at least one b, and nothing else, in which case 
uv0xy0z will contain at least as many a’s as b’s 



}  Let’s consider each case individually: 
◦  Case 3: Some b’s and some c’s 
�  If vxy consists of only b’s and c’s then uv0xy0z will 

contain the same number or fewer c’s or b’s than a’s 



}  In all cases 
◦  We found a “pumped” (or unpumped) string that the 

pumping lemma said should be in the language but that did 
not maintain the relationship of a’s to b’s and c’s as 
specified in the language. 
◦  Contradiction! 
◦  Our original assumption must be wrong. 

◦  L is not context-free. 



}  By the same argument (same choice of s), we 
can show that: 

◦  L = { w ∈ { a,b,c}* | na(w) <  nb(w) and na(w) < nc(w) } 

}  Is not context-free 



}  As mentioned before 
◦  Our basic PDA is non-deterministic 
◦  Briefly, a deterministic PDA (DPDA) is one in which 

there are no “choices” in the transitions 
}  It turns out that PDAs are not equivalent to 

DPDAs 
◦  There are some context free languages that DPDAs 

can not represent (e.g. palindromes) 
�  This is different than the case with regular languages, 

where DFA and NFA are equivalent 



Regular Languages 

Finite 
Languages 

Deterministic Context-Free Languages 

Context-Free Languages 
Non-Context-Free 
Languages 



}  We have already seen that CFLs are closed 
under: 
◦  Union 
◦  Concatenation  
◦  Kleene Star 

}  Regular Languages are also closed under 
◦  Intersection 
◦  Complementation 
◦  Difference 

}  What about Context-Free Languages? 



}  CFLs are not closed under intersection 

◦  If L1 and L2 are CFLs then L1 ∩ L2 is not necessarily a 
CFL. 

◦  Example: 
�  L1 = {aibjck | i < j } 
�  L2 = {aibjck | i < k } 

�  Are both CFLs 



}  CFLs are not closed under intersection 

L1 = {aibjck | i < j } 
 
S → ABC 
A → aAb | ε 
B → bB | b 
C → cC | ε 

L2 = {aibjck | i < k } 
 
S → AC 
A → aAc | B 
B → bB | ε 
C → cC | c 



}  CFLs are not closed under intersection 
◦  L1 ∩  L2 = {aibjck | i < j and i < k } 

◦  Which we just showed to be non-context-free. 





}  What went wrong? 
◦  Can’t we apply the same construction as we did for 

the complement of RLs (Regular Languages)? 
�  Reverse the accepting / non-accepting states 

�  PDAs can “crash”.   
�  i.e. Fail by having no place to go. 
�  Making non-accepting states accepting will not handle 

crashes. 
�  (It will crash in both machines, so the string will not be 

accepted in either case.) 

�  (we saw this in homework for NFAs) 



}  What went wrong? 
◦  Can’t we apply the same construction as we did for 

the intersection of RLs? 
�  The states of M are an ordered pair (p, q) where p ∈ Q1 

and q ∈ Q2 
�  Informally, the states of M will represent the current 

states of M1 and M2 at each simultaneous move of the 
machines. 

�  (Even ignoring for now the possibility of moving to 
multiple states at once) 



}  What went wrong? 
◦  Can’t we apply the same construction as we did for 

the intersection of RLs? 
�  The problem is the stack. 
�  Although we could try the same thing for PDAs and 

have a combined machine keep track of where both 
PDAs are at any one time… 

�  We can’t keep track of what’s on both stacks at any 
given time. 



}  However, if one of the CFLs does not use the 
stack (i.e. it is a DFA), then we can build a 
PDA that accepts L1 ∩ L2. 

}  In other words: 
◦  If L1 is a context free language and L2 is a regular 

language, then L1 ∩ L2 is context free. 

◦  See Problem 2.18 (and answer) in the textbook 



}  Summary 
◦  CFLs are closed under 
�  Union, Concatenation, Kleene Star 
◦  CFLs are NOT closed under 
�  Intersection, Difference, Complement 
◦  But 
�  The intersection of a CFL with a RL is a CFL 


