
PDAs and CFGs

1.  Given a CFG, G, construct a PDA, M, such
that L(M) = L(G)

2.  Given a PDA, M, define a CFG, G, such that
L(G) = L(M)

We will show #1 by construction … #2 is a little
messy but in the book.

}  Given: A context-free grammar G
}  Construct: A pushdown automata M
}  Such that:
◦  The language recognized by M is the same as the

language generated by G

}  Basic idea
◦  Use the stack of the PDA to simulate the

derivation of a string in the grammar.
�  Push S (start variable of G) on the stack
�  From this point on, there are two moves the PDA can

make:

1.  If a variable A is on the top of the stack, pop it and push
the right-hand side of a production A → β from G.

2.  If a terminal a is on the top of the stack, pop it and
match it with whatever symbol is being read from the
tape.

}  Observations:
◦  There can be many productions that have a given

variable on the left hand side:
�  S → ε | 0S1 | 1S0

◦  In these cases, the PDA can “choose” which string

to push onto the stack after popping a variable.
�  i.e. the PDA being constructed is non-deterministic.

�  Every path through the PDA will correspond to a valid
application of the grammar’s rules

}  More observations:
◦  A string will only be accepted if:
�  After the string is completely read, the stack is empty

}  One small problem
◦  The PDA definition in the book only allows 1

character to be pushed on the stack during a move
of the machine

◦  The right hand side of productions of a CFG can be
of any finite length.

◦  However, we can fix that…

}  transition function δ - SHORTHAND:
◦  During a move of a PDA:
�  At most one character is read from the input tape

�  ε transitions are okay
�  At most one character is popped from the top of the stack

�  ε transitions are okay
�  The machine will move to a new state based on:

�  The character read from the tape
�  The character popped off the stack
�  The current state of the machine

�  Zero or more characters from the stack alphabet are
pushed onto the stack.

}  New shorthand
◦  In long form, we can achieve this by introducing

new states, one new state for each character in the
string to be pushed onto the stack in a single move.

Note that in the shorthand notation,
symbols will be pushed onto the
stack from right to left. The
leftmost symbol will be at the top of
the stack when finished.

}  Let’s formalize this:
◦  Let G = (V, Σ, R, S) be a context-free grammar.
◦  We define a pushdown automata
�  M = (Q, Σ, Γ, δ, q0, F)
◦  Such that
�  L(M) = L(G)

}  Define M as follows:
◦  Q = { qstart, qloop, qaccept } ∪ E
�  qstart will be the start state
�  qloop will be where all the work gets done
�  qaccept will be the accepting state
�  E = set of states required to support shorthand for

allowing δ to place strings on the stack.
◦  Γ = V ∪ Σ ∪ { $ } $ ∉ (V ∪ Σ)
◦  F = { qaccept }

}  Transition function δ (using the string based
shorthand) is defined as follows:
◦  δ (qstart, ε, ε) = { (qloop, S$) }
�  To start things off, push the empty stack marker and then

S onto the stack and immediately go into the work state
◦  δ (qloop, ε, A) = { (qloop, α) | A → α is a production

of G} for all variables A
�  Pop and replace variable.

}  Transition function δ is defined as follows:
◦  δ (qloop, a, a) = { (qloop, ε) } for all terminals a
�  Pop and match terminal.
◦  δ (qloop, ε, $) = { (qaccept, ε) }
�  After all reading is done, accept only if stack is empty.
◦  No other transitions exist for M

}  Let’s look at an example:
◦  Example 2.25 (in text)

�  S → a T b | b
�  T → Ta | ε

◦  Let’s convert this to a PDA.

S → a T b | b
T → Ta | ε

}  What have we shown?
◦  Given a CFG, we can build a PDA that accepts the same

language generated by the CFG
�  This shows that the class of languages represented by

PDAs is at least as large as the class of languages
represented by CFGs.

◦  We can show the other direction (in the book; we won’t
show in class):
�  Given a PDA, we can define a CFG that can generate the

language accepted by the PDA.

}  Put together, these show that CFGs and PDAs are
equivalent

