Context Free Languages

Regular Languages are CFLs

We know that some CFLs are not regular languages

- However, all regular languages are context-free.
 - Converting a DFA into a CFG:
 - Make variable R_i for each state q_i of the DFA
 - Add rule $R_i \rightarrow aR_j$ if $\delta(q_i,a) = q_j$ is a transition in the DFA
 - Add the rule $R_i \rightarrow \epsilon$ if q_i is an accepting state in the DFA
 - Make R_0 the start variable where q_0 is the start state of the DFA

Regular Languages are CFLs

- Another argument using PDAs
 - A DFA *is* a PDA, just a basic one in which we don't pay any attention to the stack
 - Any language recognized by a PDA is a CFL

Language Space So Far

Is there something beyond regular? Yes – pumping lemma used to show languages are nonregular

Closure Properties

- We have already seen that CFLs are closed under:
 - Union
 - Concatenation
 - Kleene Star
- Regular Languages are also closed under
 - Intersection
 - Complementation
 - Difference
- What about Context-Free Languages?

Closure Properties

- CFLs are <u>not</u> closed under intersection
- CFL are <u>not</u> closed under difference.
- CFL are <u>not</u> closed under complement.
 - These will be easier to demonstrate after the pumping lemma for CFLs is used to give us some example non-CFL languages.

- L = {aⁱbⁱcⁱ | i ≥ 0} is NOT a CFL
 We'll prove using the pumping lemma soon
- What about the complement of L?

- L = {ww | w \in {a,b}*} is NOT a CFL
 - Can be shown using the pumping lemma
- What about the complement of L?
 - Turns out this IS a CFL
 - Union of all odd length strings, and
 - All even length strings for which you can guarantee there is some index where the two halves differ
 - Can be shown to be a CFL (often we do this for homework)

- L = {a^k | k is a perfect square} is NOT a CFL
 Can be shown using the pumping lemma
- What about the complement of L?
 - L' = $\{a^k | k \text{ is NOT a perfect square}\}$
 - THIS IS ALSO NOT A CFL

- L₁ = {aⁱb^jc^k | i < j, i < k} is NOT a CFL
 Can be shown using the pumping lemma
- Also $L_2 = \{a^i b^j c^k \mid i < j, i \ge k\}$ is NOT a CFL