

}  In Chapter 1 we saw that regular languages
are exactly the languages accepted by DFAs

}  Is there a type of machine such that context-
free languages are exactly the languages
accepted by these machines?
◦  Yes!
◦  NFAs plus a little something extra
�  More than just a counter (helps for {0i1i | i ≥ 0} but not

others)
�  Don’t want randomly accessible memory for the entire

string (would include too much { ww | w ∈ {a,b}* })
◦  A stack!

}  A pushdown automata (PDA) is essentially:
◦  An NFA with a stack
◦  A “move” of a PDA will depend upon
�  Current state of the machine
�  Current symbol being read in
�  Current symbol popped off the top of the stack
◦  With each “move”, the machine can
�  Move into a new state
�  Push a symbol onto the stack

These are the new pieces for the pushdown automata.
The other steps are the same as for an NFA.

Note that since the PDA is based on
the NFA, there can be more than one
legal move for a given set of inputs

Input tape

State machine

1 2

3

4
5

Stack

Note that the machine
reads from input tape,
and both reads from
and writes to the stack.

Top of stack
(starts empty)

}  The stack
◦  The stack has its own alphabet.
�  May overlap with input alphabet
�  May have additional symbols
◦  Included in this alphabet is a special symbol used to

indicate an empty stack. ($)

}  Let’s formalize this:
◦  A pushdown automata (PDA) is a 6-tuple:
�  M = (Q, Σ, Γ , δ, q0, F) where

�  Q = finite set of states
�  Σ = input tape alphabet
�  Γ = stack alphabet (may have symbols in common with Σ)
�  q0 ∈ Q = start state
�  F ⊆ Q = set of accepting states
�  δ = transition function

}  About this transition function δ:
◦  During a move of a PDA:
�  At most one character is read from the input tape

�  ε transitions are okay
�  At most one character is popped from the top of the stack

�  ε transitions are okay
�  The machine will move to a new state based on:

�  The character read from the tape
�  The character popped off the stack
�  The current state of the machine

�  At most one character from the stack alphabet is pushed
onto the stack.
�  ε transitions are okay

}  Formally:
◦  δ: Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P(Q x (Γ ∪ {ε}))

◦  Domain:
�  Q = state
�  (Σ ∪ {ε}) = symbol read off tape
�  (Γ ∪ {ε}) = symbol popped off stack
◦  Range
�  Q = new state
�  (Γ ∪ {ε}) = symbol pushed onto the stack
�  P() is the power set – the PDA includes non-determinism,

so any given input 3-tuple can branch to zero or more
output 2-tuples

}  Example:
◦  δ (q, a, b) = {(p, c)}
�  Meaning:

�  When in state q,
�  Reading in a from the tape
�  With b popped off the stack

�  The machine will:
�  Go into state p
�  Push c onto the stack

In the state diagram this
corresponds to an arrow
from state q to state p,
labeled a,b → c

}  Example:
◦  δ (q, ε, a) = {(p, b)}
�  Meaning:

�  When in state q,
�  Don’t read anything from the tape
�  With a popped off the stack

�  The machine will:
�  Go into state p
�  Push b onto the stack

In the state diagram this
corresponds to an arrow
from state q to state p,
labeled ε,a → b

}  Example:
◦  δ (q, a, ε) = {(p, b)}
�  Meaning:

�  When in state q,
�  Reading in a from the tape
�  Don’t pop anything off the stack

�  The machine will:
�  Go into state p
�  Push b onto the stack

In the state diagram this
corresponds to an arrow
from state q to state p,
labeled a,ε → b

}  Let M = (Q, Σ, Γ, δ, q0, F) be a PDA

}  A string w = y1y2…ym is accepted by M if
◦  A sequence of states r0r1…rm exists
◦  And a sequence of strings s0s1…sm exists
◦  with the conditions:
�  r0 = q0 and s0 = ε

�  Start at start state with empty stack
�  (ri+1, b) ∈ δ (ri, yi+1, a) for i = 0, …, m-1

�  where si = at, si+1 = bt for a,b ∈ (Γ ∪ {ε}), t ∈ Γ*
�  The machine is run on string w

�  rm ∈ F
�  The machine ends in a final state.

yi ∈ Σ ∪ {ε}

ri ∈ Q

si ∈ Γ*

si represents the contents of
the stack at any given time

}  Note that there can be more than one sequence of
states and stack contents that exist and satisfy
the conditions necessary to accept the string

}  Note that for string w = y1y2…ym, yi can be ε
◦  This is how to represent moves in which no

symbol is read, but the stack contents may be
modified

}  Note that the end-state contents of the stack do
not matter with respect to acceptance
◦  Often, however, the contents of the stack are

used to determine whether to enter an
accepting state

}  Let’s look at an example:
◦  L = { an#bn | n ≥ 0 }

}  Basic idea…
◦  As you read a’s you “count” them by placing on the

stack.
◦  When you encounter #, a’s should be done.
◦  When you read b’s, you match them against the a’s
◦  If you have an empty stack at the end of reading the

string, all a’s have been matched with b’s, thus,
machine should accept.

◦  Note: must be able to detect the empty stack.

}  Let’s look at an example:
◦  L = { an#bn | n ≥ 0 }

◦  The PDA will have 4 states
�  State 0 (initial): push empty stack marker
�  State 1: reading a’s
�  State 2: reading and matching b’s
�  State 3 (accepting): move to only if the stack is empty

}  Let’s look at an example:
◦  L = { an#bn | n ≥ 0 }

q1 q2

a, ε → x

#, ε → ε

b, x → ε

q3
ε, $ → ε

q0

ε, ε → $

Note we move to the accept state
only when stack is empty, and there
are no transitions from the accept
state, so we will stay in an accept
state only if there are no more
symbols to be read

}  Let’s look at an example:
◦  L = { xcxr | x ∈ { a,b }* }

◦  Basic idea for building a PDA
�  Read symbols off the tape until you reach the c.
�  As you read symbols push them on the stack
�  After reading the c, begin matching symbols being read

with symbols popped off the stack until all symbols are
read

�  If at any point the symbol read does not match the
symbol popped, the machine “crashes”

}  Let’s look at an example:
◦  L = { xcxr | x ∈ { a,b }* }

◦  The PDA will have 4 states
�  State 0 (initial): push empty stack marker
�  State 1: reading before the c
�  State 2: read after c, comparing symbols
�  State 3 (accepting): move to only if stack is

empty

}  Let’s look at an example:
◦  L = { xcxr | x ∈ { a,b }* }

Note we move to the accept state
only when stack is empty, and there
are no transitions from the accept
state, so we will stay in an accept
state only if there are no more
symbols to be read

q1 q2
b, ε → b

a, ε → a

c, ε → ε

a, a → ε

q3
ε, $ → ε

q0

ε, ε → $
b, b → ε

}  Let’s look at another example:
◦  L = { xxr | x ∈ { a,b }* }

◦  Basic idea for building a PDA
�  Much like last example, except

�  This time we don’t know when to start popping and
comparing

�  Since PDAs are non-deterministic, this is not a problem

}  Let’s look at another example:
◦  L = { xxr | x ∈ { a,b }* }

◦  The PDA will have 4 states
�  State 0 (initial): push empty stack marker
�  State 1: reading before the center of string
�  State 2: read after center of string, comparing

symbols
�  State 3 (accepting): move to only if stack is empty

◦  The machine can choose to go from state 1 to state 2 at
any time:
�  Will result in many “wrong” sets of moves
�  All you need is one “right” set of moves for a string to be

accepted.

}  Let’s look at an example:
◦  L = { xxr | x ∈ { a,b }* }

q1 q2
b, ε → b

a, ε → a

ε, ε → ε

a, a → ε

q3
ε, $ → ε

q0

ε, ε → $
b, b → ε

}  By the previous two examples, we have
effectively created a PDA that accepts all
palindromes over {a,b}*

q1 q2
b, ε → b

a, ε → a

ε, ε → ε

a, a → ε

q3
ε, $ → ε

q0

ε, ε → $
b, b → ε

This is the midpoint. At any point in the input string we can probe
whether we are at the midpoint by crossing this path. If we’re
probing for an even length string, we’ll use the epsilon transition.
Otherwise, we’ll probe assuming our current input symbol (a or b)
is the middle symbol of the palindrome. We can send out lots of
probes, and obviously most of them will be wrong and the path
will die out, but we only need one to accept…

a, ε → ε b, ε → ε

