


}  In Chapter 1 we saw that regular languages 
are exactly the languages accepted by DFAs 

}  Is there a type of machine such that context-
free languages are exactly the languages 
accepted by these machines? 
◦  Yes!   
◦  NFAs plus a little something extra 
�  More than just a counter (helps for {0i1i | i ≥ 0} but not 

others) 
�  Don’t want randomly accessible memory for the entire 

string (would include too much { ww | w ∈ {a,b}* } ) 
◦  A stack! 



}  A pushdown automata (PDA) is essentially: 
◦  An NFA with a stack 
◦  A “move” of a PDA will depend upon 
�  Current state of the machine 
�  Current symbol being read in 
�  Current symbol popped off the top of the stack 
◦  With each “move”, the machine can 
�  Move into a new state 
�  Push a symbol onto the stack  

These are the new pieces for the pushdown automata.  
The other steps are the same as for an NFA. 

Note that since the PDA is based on 
the NFA, there can be more than one 
legal move for a given set of inputs 
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Note that the machine 
reads from input tape, 
and both reads from 
and writes to the stack. 
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}  The stack 
◦  The stack has its own alphabet. 
�  May overlap with input alphabet 
�  May have additional symbols 
◦  Included in this alphabet is a special symbol used to 

indicate an empty stack.  ($) 



}  Let’s formalize this: 
◦  A pushdown automata (PDA) is a 6-tuple:  
�  M = (Q, Σ, Γ , δ, q0, F) where 

�  Q = finite set of states 
�  Σ = input tape alphabet 
�  Γ = stack alphabet (may have symbols in common with Σ) 
�  q0 ∈ Q = start state 
�  F ⊆ Q = set of accepting states 
�  δ = transition function 



}  About this transition function δ: 
◦  During a move of a PDA: 
�  At most one character is read from the input tape 

�  ε transitions are okay 
�  At most one character is popped from the top of the stack 

�  ε transitions are okay 
�  The machine will move to a new state based on: 

�  The character read from the tape 
�  The character popped off the stack 
�  The current state of the machine 

�  At most one character from the stack alphabet is pushed 
onto the stack. 
�  ε transitions are okay 



}  Formally: 
◦  δ: Q x (Σ ∪ {ε}) x (Γ ∪ {ε}) → P(Q x (Γ ∪ {ε}) ) 

◦  Domain: 
�  Q = state 
�  (Σ ∪ {ε}) = symbol read off tape 
�  (Γ ∪ {ε}) = symbol popped off stack 
◦  Range 
�  Q = new state 
�  (Γ ∪ {ε}) = symbol pushed onto the stack 
�  P( ) is the power set – the PDA includes non-determinism, 

so any given input 3-tuple can branch to zero or more 
output 2-tuples 



}  Example: 
◦  δ (q, a, b) = {(p, c)} 
�  Meaning: 

�  When in state q, 
�  Reading in a from the tape 
�  With b popped off the stack 

�  The machine will: 
�  Go into state p 
�  Push c onto the stack 

In the state diagram this 
corresponds to an arrow 
from state q to state p, 
labeled a,b → c  



}  Example: 
◦  δ (q, ε, a) = {(p, b)} 
�  Meaning: 

�  When in state q, 
�  Don’t read anything from the tape 
�  With a popped off the stack 

�  The machine will: 
�  Go into state p 
�  Push b onto the stack 

In the state diagram this 
corresponds to an arrow 
from state q to state p, 
labeled ε,a → b  



}  Example: 
◦  δ (q, a, ε) = {(p, b)} 
�  Meaning: 

�  When in state q, 
�  Reading in a from the tape 
�  Don’t pop anything off the stack 

�  The machine will: 
�  Go into state p 
�  Push b onto the stack 

In the state diagram this 
corresponds to an arrow 
from state q to state p, 
labeled a,ε → b  



}  Let M = (Q, Σ, Γ, δ, q0, F) be a PDA 

}   A string w = y1y2…ym is accepted by M if 
◦  A sequence of states r0r1…rm exists  
◦  And a sequence of strings s0s1…sm exists 
◦  with the conditions: 
�  r0 = q0 and s0 = ε 

�  Start at start state with empty stack 
�  (ri+1, b)  ∈ δ (ri, yi+1, a) for i = 0, …, m-1 

�  where si = at, si+1 = bt for a,b ∈ (Γ ∪ {ε}), t ∈ Γ*  
�  The machine is run on string w 

�  rm ∈ F 
�  The machine ends in a final state. 

yi ∈ Σ ∪ {ε}  

ri ∈ Q  

si ∈ Γ* 

si represents the contents of 
the stack at any given time 



}  Note that there can be more than one sequence of 
states and stack contents that exist and satisfy 
the conditions necessary to accept the string 

}  Note that for string w = y1y2…ym, yi can be ε 
◦  This is how to represent moves in which no 

symbol is read, but the stack contents may be 
modified 

}  Note that the end-state contents of the stack do 
not matter with respect to acceptance 
◦  Often, however, the contents of the stack are 

used to determine whether to enter an 
accepting state 



}  Let’s look at an example: 
◦  L = { an#bn | n ≥ 0 } 

}  Basic idea… 
◦  As you read a’s you “count” them by placing on the 

stack. 
◦  When you encounter #, a’s should be done. 
◦  When you read b’s, you match them against the a’s 
◦  If you have an empty stack at the end of reading the 

string, all a’s have been matched with b’s, thus, 
machine should accept. 

◦  Note: must be able to detect the empty stack. 



}  Let’s look at an example: 
◦  L = { an#bn | n ≥ 0 } 

◦  The PDA will have 4 states 
�  State 0 (initial): push empty stack marker 
�  State 1: reading a’s 
�  State 2: reading and matching b’s 
�  State 3 (accepting): move to only if the stack is empty 



}  Let’s look at an example: 
◦  L = { an#bn | n ≥ 0 } 

q1 q2 

a, ε →  x 

#, ε →  ε 

b, x →  ε 

q3 
ε, $ →  ε 

q0 

ε, ε → $ 

Note we move to the accept state 
only when stack is empty, and there 
are no transitions from the accept 
state, so we will stay in an accept 
state only if there are no more 
symbols to be read 



}  Let’s look at an example: 
◦  L = { xcxr | x ∈ { a,b }* } 

◦  Basic idea for building a PDA 
�  Read symbols off the tape until you reach the c. 
�  As you read symbols push them on the stack 
�  After reading the c, begin matching symbols being read 

with symbols popped off the stack until all symbols are 
read 

�  If at any point the symbol read does not match the 
symbol popped, the machine “crashes” 



}  Let’s look at an example: 
◦  L = { xcxr | x ∈ { a,b }* } 

◦  The PDA will have 4 states 
�  State 0 (initial): push empty stack marker 
�  State 1: reading before the c 
�  State 2: read after c, comparing symbols 
�  State 3 (accepting): move to only if stack is 

empty 



}  Let’s look at an example: 
◦  L = { xcxr | x ∈ { a,b }* } 

Note we move to the accept state 
only when stack is empty, and there 
are no transitions from the accept 
state, so we will stay in an accept 
state only if there are no more 
symbols to be read 

q1 q2 
b, ε  → b 

a, ε → a 

c, ε → ε 

a, a → ε 

q3 
ε, $ → ε 

q0 

ε, ε → $ 
b, b → ε 



}  Let’s look at another example: 
◦  L = { xxr | x ∈ { a,b }* } 

◦  Basic idea for building a PDA 
�  Much like last example, except 

�  This time we don’t know when to start popping and 
comparing 

�  Since PDAs are non-deterministic, this is not a problem 



}  Let’s look at another example: 
◦  L = { xxr | x ∈ { a,b }* } 

◦  The PDA will have 4 states 
�  State 0 (initial): push empty stack marker 
�  State 1: reading before the center of string 
�  State 2: read after center of string, comparing 

symbols 
�  State 3 (accepting): move to only if stack is empty 

◦  The machine can choose to go from state 1 to state 2 at 
any time: 
�  Will result in many “wrong” sets of moves 
�  All you need is one “right” set of moves for a string to be 

accepted. 



}  Let’s look at an example: 
◦  L = { xxr | x ∈ { a,b }* } 

q1 q2 
b, ε  → b 

a, ε → a 

ε, ε → ε 

a, a → ε 

q3 
ε, $ → ε 

q0 

ε, ε → $ 
b, b → ε 



}  By the previous two examples, we have 
effectively created a PDA that accepts all 
palindromes over {a,b}* 

q1 q2 
b, ε  → b 

a, ε → a 

ε, ε → ε 

a, a → ε 

q3 
ε, $ → ε 

q0 

ε, ε → $ 
b, b → ε 

This is the midpoint.  At any point in the input string we can probe 
whether we are at the midpoint by crossing this path.  If we’re 
probing for an even length string, we’ll use the epsilon transition.  
Otherwise, we’ll probe assuming our current input symbol (a or b) 
is the middle symbol of the palindrome.  We can send out lots of 
probes, and obviously most of them will be wrong and the path 
will die out, but we only need one to accept… 

a, ε → ε b, ε → ε 


