

}  When working with grammars, it is often
convenient to have them in a simple,
standard form

◦  Helps for identifying if a specific string can be
generated by the grammar

◦  Helps for proofs
�  Context-free grammar version of the pumping lemma
�  Decidability proofs for context-free grammars
�  Complexity proofs for context-free grammars

�  (we’ll get to all of these later in the course)

}  A context-free grammar is in Chomsky
Normal Form (CNF) if every production (rule)
is of the form:
�  A → BC
�  A → a
�  S → ε

�  Where A, B, and C are variables (B and C can not be the
starting variable)

�  And where a is a terminal.
�  And where S is the starting variable (to allow empty

string)

}  Theorem: Any context-free language is
generated by a context-free grammar in CNF

}  Equivalently:
◦  Any context-free grammar can be converted to CNF

}  We’ll do a proof by construction: defining
rules for converting an arbitrary context-free
grammar into a context-free grammar in CNF

}  Step #1: add a new start variable and a rule

◦  S0 → S where S is the original starting variable

◦  What does this do?
�  It eliminates any possibility of the starting variable

occurring on the right hand side of any rule

}  Step #2: remove all ε rules

◦  Remove A → ε where A is any variable (other than
the new starting variable)

◦  This may take several sub-steps.
�  Each time we remove such a rule A → ε, we look for all

occurrences of variable A on the right hand side in other
rules, and add new rules in which A is replaced with ε

�  If A appears by itself on the right hand side of any rule,
this creates a new example of a B → ε rule that also
needs to be fixed

◦  When we’re done – we’ve removed ε from all rules
(except S0 → ε if it got created)

}  Step #3: remove all unit rules

◦  A → B

◦  This also may take several sub-steps.
�  We can get rid of empty unit rules A → A
�  Each time we remove such a rule A → B, we add new

rules A → u for each existing B → u rule (unless this
adds back a rule we’ve already eliminated)

◦  When we’re done with this step, all rules will involve
either a single terminal or multiple symbols
(variables and terminals combined)

This step may cause a
variable to become
unreachable. It can be
eliminated.

}  Step #4: convert rules into proper format

◦  Rules with too many symbols can be broken down
by introducing intermediate variables, e.g.:
�  A → BCD becomes

�  A → BE
�  E → CD

�  A → aB becomes
�  A → CB
�  C → a

◦  When we’re done with this step, we’re in CNF!

◦  (see Sipser pages 108-111 for more details)

}  Starting grammar G
}  S → ASA | aB
}  A → B | S
}  B → b | ε

}  (We’ll do this on the board)

}  Starting grammar G
}  A → BAB | B | ε
}  B → 00 | ε

}  Try this one on your own
}  (answer on the following slide)

}  Starting grammar G
}  A → BAB | B | ε
}  B → 00 | ε

}  S0 → AB | CC | BA | BD | BB | ε
}  A → AB | CC | BA | BD | BB
}  B → CC
}  C → 0
}  D → AB

}  Given a CFG, G, how can we determine if a
particular string w is generated by G?

◦  For an arbitrary CFG, G, it is not obvious how to
know when all possibilities have been tried
◦  What about G’ in CNF?
�  String w has length n
�  What must be true about any string of length n

generated by G’ ?
�  It uses n-1 applications of a rule of the type A → BC
�  It uses n applications of a rule of the type A → a
�  All derivations of strings of length n>0 involve exactly 2n-1

derivation steps – we can exhaustively search them all

