


}  When working with grammars, it is often 
convenient to have them in a simple, 
standard form 

◦  Helps for identifying if a specific string can be 
generated by the grammar 

◦  Helps for proofs 
�  Context-free grammar version of the pumping lemma 
�  Decidability proofs for context-free grammars 
�  Complexity proofs for context-free grammars 

�  (we’ll get to all of these later in the course) 



}  A context-free grammar is in Chomsky 
Normal Form (CNF) if every production (rule) 
is of the form: 
�  A → BC 
�  A → a 
�  S → ε  

�  Where A, B, and C are variables (B and C can not be the 
starting variable) 

�  And where  a  is a terminal. 
�  And where S is the starting variable (to allow empty 

string) 



}  Theorem:  Any context-free language is 
generated by a context-free grammar in CNF 

}  Equivalently:   
◦  Any context-free grammar can be converted to CNF 

}  We’ll do a proof by construction:  defining 
rules for converting an arbitrary context-free 
grammar into a context-free grammar in CNF 



}  Step #1: add a new start variable and a rule 

◦  S0 → S  where S is the original starting variable 

◦  What does this do? 
�  It eliminates any possibility of the starting variable 

occurring on the right hand side of any rule 



}  Step #2: remove all ε rules 

◦  Remove A → ε  where A is any variable (other than 
the new starting variable) 

 
◦  This may take several sub-steps. 
�  Each time we remove such a rule A → ε, we look for all 

occurrences of variable A on the right hand side in other 
rules, and add new rules in which A is replaced with ε 

�  If A appears by itself on the right hand side of any rule, 
this creates a new example of a B → ε rule that also 
needs to be fixed 

◦  When we’re done – we’ve removed ε from all rules 
(except S0 → ε if it got created) 



}  Step #3: remove all unit rules 

◦  A → B 

◦  This also may take several sub-steps. 
�  We can get rid of empty unit rules A → A 
�  Each time we remove such a rule A → B, we add new 

rules A → u for each existing B → u rule (unless this 
adds back a rule we’ve already eliminated) 

◦  When we’re done with this step, all rules will involve 
either a single terminal or multiple symbols 
(variables and terminals combined) 

This step may cause a 
variable to become 
unreachable.  It can be 
eliminated. 



}  Step #4: convert rules into proper format 

◦  Rules with too many symbols can be broken down 
by introducing intermediate variables, e.g.: 
�  A → BCD becomes 

�  A → BE 
�  E → CD 

�  A → aB becomes 
�  A → CB 
�  C → a 

◦  When we’re done with this step, we’re in CNF! 

◦  (see Sipser pages 108-111 for more details) 



}  Starting grammar G 
}  S → ASA | aB 
}  A → B | S 
}  B → b | ε 

}  (We’ll do this on the board) 



}  Starting grammar G 
}  A → BAB | B | ε 
}  B → 00 | ε 

}  Try this one on your own 
}  (answer on the following slide) 



}  Starting grammar G 
}  A → BAB | B | ε 
}  B → 00 | ε 

}  S0 → AB | CC | BA | BD | BB | ε 
}  A → AB | CC | BA | BD | BB 
}  B → CC 
}  C → 0 
}  D → AB 



}  Given a CFG, G, how can we determine if a 
particular string w is generated by G? 

◦  For an arbitrary CFG, G, it is not obvious how to 
know when all possibilities have been tried 
◦  What about G’ in CNF? 
�  String w has length n 
�  What must be true about any string of length n 

generated by G’ ? 
�  It uses n-1 applications of a rule of the type  A → BC 
�  It uses n applications of a rule of the type A → a 
�  All derivations of strings of length n>0 involve exactly 2n-1 

derivation steps – we can exhaustively search them all 


