

}  Graphical means to illustrate a derivation of a
string from a grammar
◦  Root of the tree = start variable
◦  Interior nodes = other variables
�  Children of nodes = application of a production rule
◦  Leaf nodes = Terminal symbols

}  Example: { wa | w ∈ {a,b}*}
◦  S -> aS | bS | a
◦  Suppose x = abba

S

a S

b S

b S

a

}  Suppose we want to define a grammar that
can generate algebraic expressions

◦  We’ll just use a single terminal, a, to represent any
numeric value

◦  E.g. a * (a + a*(a + a))

}  Defining the grammar for algebraic
expressions:

}  Terminals:
◦  Let a be a numeric constant
◦  Set of binary operators: {+, -, *, /}
◦  Expressions can be parenthesized

}  Defining the grammar for algebraic
expressions:
◦  G = (V, Σ, R, S)

◦  V = {S}
◦  Σ = { a, -, +, *, /, (,) }
◦  S = S
◦  R = see next slide

}  Defining the grammar for algebraic
expressions – Production rules
◦  S → S + S (rule 1)
 S → S – S (rule 2)
 S → S * S (rule 3)
 S → S / S (rule 4)
 S → (S) (rule 5)
 S → a (rule 6)

}  Show derivation for a + a * a
◦  S ⇒ S + S rule 1
 S ⇒* a + S rule 6
 S ⇒* a + S * S rule 3
 S ⇒* a + a * S rule 6
 S ⇒* a + a * a rule 6

S

S + S

a S * S

a a

}  Another derivation for a + a * a
◦  S ⇒ S * S rule 3
 S ⇒* S * a rule 6
 S ⇒* S + S * a rule 1
 S ⇒* a + S * a rule 6
 S ⇒* a + a * a rule 6

S

S * S

S + S a

a a

}  1 string: a + a * a
}  2 different parse trees / derivations

S

S * S

S + S a

a a

S

S + S

a S * S

a a

}  A CFG is said to be ambiguous if there is at
least 1 string in L(G) having two or more
distinct derivations (i.e. different parse trees).

}  In some applications, such as programming
languages, this would be problematic
◦  There needs to be a unique interpretation for each

string

}  A CFG is said to be ambiguous if there is at
least 1 string in L(G) having two or more
distinct derivations (i.e. different parse trees).

}  Some grammars are inherently ambiguous.

}  Some grammars can have ambiguity removed
without changing the language of the
grammar.

}  To demonstrate that a particular grammar is
ambiguous:
◦  Find a string x in the L(G) that has two derivations

}  To demonstrate that a particular grammar is
not ambiguous
◦  Can be difficult.
◦  Need to argue that all strings have non-ambiguous

derivation

}  Leftmost derivations
◦  A leftmost derivation is one where the leftmost

variable in the current string is always the first to
get replaced via a production rule.

◦  A rightmost derivation is one where the rightmost
variable in the current string is always the first to
get replaced via a production rule.

}  As it turns out (we won’t prove this)
◦  In unambiguous grammars, leftmost derivations will

always be unique.
◦  In unambiguous grammars, rightmost derivations

will always be unique.

}  a + a + a

S

S + S

a S + S

a a

S

S + S

S + S a

a a

One possible leftmost derivation Another possible leftmost derivation

}  Some languages are inherently ambiguous
◦  Removing ambiguities cannot always be done

}  In fact,
◦  We can/will show there is no “algorithm” for determining if

a CFG is ambiguous
�  This is for later in the course

}  However,
◦  On a case by case basis, we may be able to remove

ambiguities

}  Abbreviated grammar for algebraic
expressions – Production rules
◦  S → S + S (rule 1)
 S → S * S (rule 2)
 S → (S) (rule 3)
 S → a (rule 4)

(just ignore – and / to keep things simple)

}  This grammar has two problems:
◦  Precedence of operators is not respected
�  a*a + a should be interpreted as (a*a) + a
◦  Sequence of identical operators can be grouped either

from the left or the right
�  a+a+a can be interpreted as either (a+a) + a or a + (a+a)

}  We want to remove the ambiguity
◦  Derive a CFG that generates the *same* language of

algebraic expressions as before, but without any
ambiguity

}  Solution
◦  Introduce some new variables
�  Factor – expression that cannot be broken up by either *

or +
�  a
�  (S)

�  Term – expression that cannot be broken up by +
�  All Factors
�  T * F

�  Expression – all possible expressions
�  All Terms
�  S + T

}  Our new grammar
◦  S → S + T | T
◦  T → T * F | F
◦  F → (S) | a

}  Note that
◦  all recursion is leftmost
◦  * has higher precedence than +
◦  a + a + a + a * a is interpreted as

�  ((a+a) + a) + (a*a)

S

S + T

S + T

S + T

T * F

F a

a

F

F a

a

a + a + a + a * a

T

F

a

Identify rightmost term

Identify next rightmost term

Identify next rightmost term

Identify rightmost
factor

}  Ambiguity will often come in two flavors:
◦  Ambiguity over which rules to apply
�  Different choices of rules result in same derived string
◦  Ambiguity over what order to apply a specific set of

rules

◦  General guide is to define the grammar (often
through additional introduced variables) so that
these ambiguities are no longer options
�  Controlling the choice of rules available along a given

derivation path
�  Controlling the sequence of rules available along a

given derivation path

