


}  Graphical means to illustrate a derivation of a 
string from a grammar 
◦  Root of the tree = start variable 
◦  Interior nodes = other variables 
�  Children of nodes = application of a production rule 
◦  Leaf nodes = Terminal symbols 

}  Example:  { wa | w ∈ {a,b}*} 
◦  S -> aS | bS | a 
◦  Suppose x = abba 
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}  Suppose we want to define a grammar that 
can generate algebraic expressions 

◦  We’ll just use a single terminal, a, to represent any 
numeric value 

◦  E.g.   a * (a + a*(a + a)) 



}  Defining the grammar for algebraic 
expressions: 

}  Terminals: 
◦  Let a be a numeric constant 
◦  Set of binary operators: {+, -, *, /} 
◦  Expressions can be parenthesized 
 



}  Defining the grammar for algebraic 
expressions: 
◦  G = (V, Σ, R, S) 

◦  V = {S} 
◦  Σ = { a, -, +, *, /, (, ) } 
◦  S = S 
◦  R = see next slide 



}  Defining the grammar for algebraic 
expressions – Production rules 
◦  S → S + S   (rule 1) 
   S → S – S     (rule 2) 
   S → S * S       (rule 3) 
   S → S / S       (rule 4) 
   S → (S)          (rule 5) 
   S → a             (rule 6) 



}  Show derivation for a + a * a 
◦  S ⇒ S + S               rule 1 
   S ⇒* a + S               rule 6 
   S ⇒* a + S * S          rule 3 
   S ⇒* a + a * S          rule 6 
   S ⇒* a + a * a          rule 6 
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}  Another derivation for a + a * a 
◦  S ⇒ S * S   rule 3 
   S ⇒* S * a   rule 6 
   S ⇒* S + S * a   rule 1 
   S ⇒* a + S * a   rule 6 
   S ⇒* a + a * a   rule 6 
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}  1 string:     a + a * a 
}  2 different parse trees / derivations 
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}  A CFG is said to be ambiguous if there is at 
least 1 string in L(G) having two or more 
distinct derivations (i.e. different parse trees). 

}  In some applications, such as programming 
languages, this would be problematic 
◦  There needs to be a unique interpretation for each 

string 



}  A CFG is said to be ambiguous if there is at 
least 1 string in L(G) having two or more 
distinct derivations (i.e. different parse trees). 
 

}  Some grammars are inherently ambiguous. 

}  Some grammars can have ambiguity removed 
without changing the language of the 
grammar. 

 



}  To demonstrate that a particular grammar is 
ambiguous: 
◦  Find a string x in the L(G) that has two derivations 

}  To demonstrate that a particular grammar is 
not ambiguous 
◦  Can be difficult. 
◦  Need to argue that all strings have non-ambiguous 

derivation 



}  Leftmost derivations 
◦  A leftmost derivation is one where the leftmost 

variable in the current string is always the first to 
get replaced via a production rule. 

◦  A rightmost derivation is one where the rightmost 
variable in the current string is always the first to 
get replaced via a production rule. 



}  As it turns out (we won’t prove this) 
◦  In unambiguous grammars, leftmost derivations will 

always be unique. 
◦  In unambiguous grammars, rightmost derivations 

will always be unique. 



}  a + a + a 
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}  Some languages are inherently ambiguous 
◦  Removing ambiguities cannot always be done 

}  In fact, 
◦  We can/will show there is no “algorithm” for determining if 

a CFG is ambiguous 
�  This is for later in the course 

}  However,  
◦  On a case by case basis, we may be able to remove 

ambiguities 



}  Abbreviated grammar for algebraic 
expressions – Production rules 
◦  S → S + S          (rule 1) 
   S → S * S              (rule 2) 
   S → (S)                  (rule 3) 
   S → a                     (rule 4) 
 
 
(just ignore – and / to keep things simple) 



}  This grammar has two problems: 
◦  Precedence of operators is not respected 
�  a*a + a should be interpreted as (a*a) + a 
◦  Sequence of identical operators can be grouped either 

from the left or the right 
�  a+a+a can be interpreted as either (a+a) + a or a + (a+a) 

}  We want to remove the ambiguity 
◦  Derive a CFG that generates the *same* language of 

algebraic expressions as before, but without any 
ambiguity 



}  Solution 
◦  Introduce some new variables 
�  Factor – expression that cannot be broken up by either * 

or + 
�  a 
�  (S) 

�  Term – expression that cannot be broken up by + 
�  All Factors 
�  T * F 

�  Expression – all possible expressions 
�  All Terms 
�  S + T 



}  Our new grammar 
◦  S → S + T | T 
◦  T → T * F | F 
◦  F  → (S) | a 

}  Note that 
◦  all recursion is leftmost  
◦  * has higher precedence than + 
◦  a + a + a + a * a is interpreted as  

�  ((a+a) + a) + (a*a) 
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Identify next rightmost term 

Identify rightmost 
factor 



}  Ambiguity will often come in two flavors: 
◦  Ambiguity over which rules to apply 
�  Different choices of rules result in same derived string 
◦  Ambiguity over what order to apply a specific set of 

rules 

◦  General guide is to define the grammar (often 
through additional introduced variables) so that 
these ambiguities are no longer options 
�  Controlling the choice of rules available along a given 

derivation path 
�  Controlling the sequence of rules available along a 

given derivation path 
 


