

}  Recall – grammars comprise
◦  Terminals (alphabet)
◦  Variables
◦  Start Variable
◦  Rules

}  Formally:
◦  A grammar is a 4-tuple: (V, Σ, R, S) where
�  V is a set of variables
�  Σ is a set of terminals
�  R is a set of production rules
�  V and Σ are disjoint (i.e. V ∩ Σ = ∅)
�  S ∈ V, is the start variable

}  Recall
◦  We say that a string w can be derived from a

variable S if S can be transformed into w from a
finite application of the rules, R, of the grammar

◦  We say that the language of the grammar, L(G), is
all strings that can be derived from the starting
variable, S, by applying rules of the grammar.
�  L(G) = { w ∈ Σ* | S ⇒* w}

◦  A language L is a context-free language if and only
if there is a grammar G such that L(G) = L.

}  { wa | w ∈ {a,b}*} (string has to end in a)

}  { w ∈ {a,b}* | w has an even number of a’s}

}  { aibjck | i=j, i,j,k ≥ 0 }

}  { aibjck | i+j=k, i,j,k ≥ 0 }

}  {w ∈ {a,b}* | |w| is odd and middle symbol is a}

}  Note – to formally prove that the language of
the grammar L(G), is in fact equal to the
language described, L, would typically
require proving:
◦  L ⊆ L(G)
◦  L(G) ⊆ L
◦  Using two separate inductive proofs

}  CFLs are closed under union, concatenation,
and Kleene star

◦  If L1 and L2 are CFLs then
�  L1 ∪ L2 is a CFL
�  L1 L2 is a CFL
�  L1

* is a CFL

}  Later we will see that CFLs are not closed
under intersection or complementation or
difference

}  Formally, Let L1 and L2 be CFLs. Then there
exist CFGs:
◦  G1 = (V1, Σ, R1, S1)
◦  G2 = (V2, Σ, R2, S2) such that
◦  L(G1) = L1 and L(G2) = L2
◦  Assume that V1 ∩ V2 = ∅

}  We will define:
◦  Gu = (Vu, Σ, Ru, Su) such that L(Gu) = L1 ∪ L2
◦  Gc = (Vc, Σ, Rc, Sc) such that L(Gc) = L1 L2
◦  Gk = (Vk, Σ, Rk, Sk) such that L(Gc) = L1

*

}  Union
◦  General Idea
�  Define the new CFG so that we can either

�  start with the start variable of G1 and follow the
production rules of G1 or

�  start with the start variable of G2 and follow the
production rules of G2

�  The first case will derive a string in L1
�  The second case will derive a string in L2

}  Union
◦ Formally
� Gu = (Vu, Σ, Ru, Su)
�  Vu = V1 ∪ V2 ∪ {Su}
�  Su is new start variable
�  Ru = R1 ∪ R2 ∪ {Su → S1 | S2 }

}  Concatenation
◦  General Idea
�  Define the new CFG so that

�  We force a derivation starting from the start variable of
G1 using the rules of G1

�  After that…
�  We force a derivation starting from the start variable of

G2 using the rules of G2

}  Concatenation
◦ Formally
� Gc = (Vc, Σ, Rc, Sc)
�  Vc = V1 ∪ V2 ∪ {Sc}
�  Sc is new start variable
�  Rc = R1 ∪ R2 ∪ {Sc → S1S2 }

}  Kleene Star
◦  General Idea
�  Define the new CFG so that

�  We can repeatedly concatenate derivations of
strings in L1

�  Since L* contains ε, we must be careful to
ensure that there are productions in our
new CFG such that ε can be derived from
the start variable

}  Kleene star
◦ Formally
� Gk = (Vk, Σ, Rk, Sk)
�  Vk = V1 ∪ {Sk}
�  Sk is new start variable
�  Rk = R1 ∪ {Sk → S1Sk | ε }

}  Closure properties can be used in building
CFGs:
◦  Example:
�  Find a CFG for L = {0i1j0k | j > i + k}

�  Number of 1s is greater than the combined number of 0s
on both sides

�  This language can be expressed as
�  L = {0i1i 1m 1k0k | m > 0}

}  Example:
◦  Find a CFG for L = {0i1j0k | j > i + k}
�  This language can be expressed as

�  L = {0i1i 1m 1k0k | m > 0}
�  This is the concatenation of 3 languages L1L2L3 where

�  L1 = {0i1i | i ≥ 0}
�  L2 = {1m | m > 0}
�  L3 = {1k0k | k ≥ 0}

}  Example:
◦  CFG for L1 = {0i1i | i ≥ 0}
�  A → 0A1 | ε
◦  CFG for L2 = {1m | m > 0}
�  B → 1B | 1
◦  CFG for L3 = {1k0k | k ≥ 0}
�  C → 1C0 | ε

}  CFG for L
◦  S → ABC
◦  A → 0A1 | ε
◦  B → 1B | 1
◦  C → 1C0 | ε

