Context-Free Languages

Grammars

Recall – grammars comprise

- Terminals (alphabet)
- Variables
- Start Variable
- Rules
- Formally:
 - \circ A grammar is a 4-tuple: (V, $\Sigma,$ R, S) where
 - V is a set of variables
 - Σ is a set of terminals
 - R is a set of production rules
 - V and Σ are disjoint (i.e. V \cap Σ = \varnothing)
 - $S \in V$, is the start variable

Grammars

Recall

- We say that a string w can be derived from a variable S if S can be transformed into w from a finite application of the rules, R, of the grammar
- We say that the language of the grammar, L(G), is all strings that can be derived from the starting variable, S, by applying rules of the grammar.
 - $L(G) = \{ w \in \Sigma^* | S \Rightarrow^* w \}$
- A language L is a context-free language if and only if there is a grammar G such that L(G) = L.

Grammar Example Session

- ▶ { wa $| w \in \{a,b\}^*$ } (string has to end in a)
- ▶ { $w \in \{a,b\}^* \mid w \text{ has an even number of a's}$
- ▶ { $a^{i}b^{j}c^{k} | i=j, i,j,k \ge 0$ }
- ▶ { $a^{i}b^{j}c^{k} | i+j=k, i,j,k \ge 0$ }
- {w \in {a,b}* | |w| is odd and middle symbol is a}

Grammars and Languages

- Note to formally prove that the language of the grammar L(G), is in fact equal to the language described, L, would typically require proving:
 - $\circ L \subseteq L(G)$
 - \circ L(G) \subseteq L
 - Using two separate inductive proofs

Closure Properties of CFLs

- CFLs are closed under union, concatenation, and Kleene star
 - If L_1 and L_2 are CFLs then
 - $L_1 \cup L_2$ is a CFL
 - $L_1 L_2$ is a CFL
 - L_1^* is a CFL
- Later we will see that CFLs are not closed under intersection or complementation or difference

Closure Properties of CFLs

- Formally, Let L₁ and L₂ be CFLs. Then there exist CFGs:
 - $G_1 = (V_1, \Sigma, R_1, S_1)$ • $C_1 = (V_1, \Sigma, R_1, S_1)$ such t
 - $G_2 = (V_2, \Sigma, R_2, S_2)$ such that • $L(G_1) = L_1$ and $L(G_2) = L_2$
 - Assume that $V_1 \cap V_2 = \emptyset$
- We will define:
 - $G_u = (V_u, \Sigma, R_u, S_u)$ such that $L(G_u) = L_1 \cup L_2$ • $G_c = (V_c, \Sigma, R_c, S_c)$ such that $L(G_c) = L_1 L_2$
 - $G_k = (V_k, \Sigma, R_k, S_k)$ such that $L(G_c) = L_1^*$

Union

General Idea

- Define the new CFG so that we can either
 - start with the start variable of G_1 and follow the production rules of G_1 or
 - start with the start variable of $\rm G_2$ and follow the production rules of $\rm G_2$
 - The first case will derive a string in L₁
 - The second case will derive a string in L₂

- Union
 - Formally

•
$$\mathbf{G}_{u} = (\mathbf{V}_{u}, \boldsymbol{\Sigma}, \mathbf{R}_{u}, \mathbf{S}_{u})$$

• $\mathbf{V}_{u} = \mathbf{V}_{1} \cup \mathbf{V}_{2} \cup \{\mathbf{S}_{u}\}$

•
$$\mathbf{R}_{\mathbf{u}} = \mathbf{R}_1 \cup \mathbf{R}_2 \cup \{\mathbf{S}_{\mathbf{u}} \rightarrow \mathbf{S}_1 \mid \mathbf{S}_2\}$$

Concatenation

- General Idea
 - Define the new CFG so that
 - We force a derivation starting from the start variable of G₁ using the rules of G₁
 - After that...
 - We force a derivation starting from the start variable of $\rm G_2$ using the rules of $\rm G_2$

- Concatenation
 - Formally

•
$$\mathbf{G}_{c} = (\mathbf{V}_{c}, \boldsymbol{\Sigma}, \mathbf{R}_{c}, \mathbf{S}_{c})$$

• $\mathbf{V}_{c} = \mathbf{V}_{1} \cup \mathbf{V}_{2} \cup \{\mathbf{S}_{c}\}$

• S_c is new start variable

•
$$\mathbf{R}_{\mathbf{c}} = \mathbf{R}_1 \cup \mathbf{R}_2 \cup \{\mathbf{S}_{\mathbf{c}} \rightarrow \mathbf{S}_1 \mathbf{S}_2\}$$

Kleene Star

General Idea

- Define the new CFG so that
 - We can repeatedly concatenate derivations of strings in L₁
- Since L^{*} contains ε, we must be careful to ensure that there are productions in our new CFG such that ε can be derived from the start variable

- Kleene star
 - Formally

•
$$\mathbf{G}_{k} = (\mathbf{V}_{k}, \boldsymbol{\Sigma}, \mathbf{R}_{k}, \mathbf{S}_{k})$$

• $\mathbf{V}_{k} = \mathbf{V}_{1} \cup \{\mathbf{S}_{k}\}$

• S_k is new start variable

•
$$\mathbf{R}_k = \mathbf{R}_1 \cup \{\mathbf{S}_k \rightarrow \mathbf{S}_1 \mathbf{S}_k \mid \mathbf{\epsilon}\}$$

- Closure properties can be used in building CFGs:
 - Example:
 - Find a CFG for $L = \{0^{i}1^{j}0^{k} | j > i + k\}$
 - Number of 1s is greater than the combined number of 0s on both sides
 - This language can be expressed as
 - $L = \{0^{i}1^{i} \ 1^{m} \ 1^{k}0^{k} \mid m > 0\}$

• Example:

- Find a CFG for $L = \{0^{i}1^{j}0^{k} \mid j > i + k\}$
 - This language can be expressed as
 - $L = \{0^{i}1^{i} \ 1^{m} \ 1^{k}0^{k} \mid m > 0\}$
 - This is the concatenation of 3 languages $L_1L_2L_3$ where
 - $L_1 = \{0^i 1^i \mid i \ge 0\}$
 - $L_2 = \{1^m \mid m > 0\}$
 - $L_3 = \{1^k 0^k \mid k \ge 0\}$

• Example:

- CFG for $L_1 = \{0^i 1^i \mid i \ge 0\}$
 - $A \rightarrow 0A1 | \epsilon$
- CFG for $L_2 = \{1^m \mid m > 0\}$
 - $B \rightarrow 1B \mid 1$
- CFG for $L_3 = \{1^k 0^k \mid k \ge 0\}$ • C \rightarrow 1C0 | ϵ
- CFG for L
 - \circ S \rightarrow ABC
 - $A \rightarrow 0A1 \mid \epsilon$
 - \circ B \rightarrow 1B | 1
 - \circ C \rightarrow 1C0 | ϵ