Context-Free Languages

Grammars

» Recall - grammars comprise
- Terminals (alphabet)
> Variables
- Start Variable
> Rules

» Formally:
- A grammar is a 4-tuple: (V, Z, R, S) where
- Vis a set of variables
- 2 is a set of terminals
- Ris a set of production rules
- Vand X are disjoint (i.e. VN 2 = &)
- SEV, is the start variable

Grammars

» Recall

- We say that a string w can be derived from a
variable S if S can be transformed into w from a
finite application of the rules, R, of the grammar

- We say that the language of the grammar, L(G), is
all strings that can be derived from the starting
variable, S, by applying rules of the grammar.

- L(G) ={weX|S="w}

- A language L is a context-free language if and only
if there is a grammar G such that L(G) = L.

Grammar Example Session

» {wa | we{a,b}*} (string has to end in a)
» {w € {a,b}* | whas an even number of a’s}

» { a'bick | i=j, i,j,k = 0}

v { albick | i+j=k, i,j,k = 0}

» {w € {a,b}* | |w| is odd and middle symbol is a}

Grammars and Languages

» Note - to formally prove that the language of
the grammar L(G), is in fact equal to the
language described, L, would typically
require proving:

- L C L(G)
- L(G) C L
- Using two separate inductive proofs

Closure Properties of CFLs

» CFLs are closed under union, concatenation,
and Kleene star

- If L, and L, are CFLs then
- L, UL, isaCFL
- L, Lyisa CFL
- L, is a CFL

» Later we will see that CFLs are not closed
under intersection or complementation or
difference

p—

Closure Properties of CFLs

» Formally, Let L, and L, be CFLs. Then there
exist CFGs:
-G, =WV, 2, Ry, Sy)
- G, =(V,, 2, R,, S,) such that
> L(G,) =L, and L(G,) =L,
- Assume that V, NV, =
» We will define:
- G, =(V,, 2, R, S,) such that L(G,) =L, UL,
- G, =(V, 2, R, S.) such that L(G,) =L, L,
> G, =V, Z, Ry, Sp) such that L(G,) =L,

p—

Union, Concatenation, and Kleene Star of CFLs

» Union
- General Idea

- Define the new CFG so that we can either
- start with the start variable of G, and follow the
production rules of G, or

- start with the start variable of G, and follow the
production rules of G,

- The first case will derive a string in L,
- The second case will derive a string in L,

Union, Concatenation, and Kleene Star of CFLs

» Union
> Formally
-G, =V, 2, R, S))
-V, =V, U V,U{S;}
- S, is new start variable
R, =R, UR,U{S, =S, |S,}

p—

Union, Concatenation, and Kleene Star of CFLs

» Concatenation
> General Idea

- Define the new CFG so that

- We force a derivation starting from the start variable of
G, using the rules of G,
- After that...

- We force a derivation starting from the start variable of
G, using the rules of G,

Union, Concatenation, and Kleene Star of CFLs

» Concatenation
> Formally
-G, =(V, 2, R, S))
V.=V, U V,U{S}
- S. is new start variable
R, =R, UR,U{S. = S,S,}

Union, Concatenation, and Kleene Star of CFLs

» Kleene Star
> General Idea

- Define the new CFG so that

- We can repeatedly concatenate derivations of
strings in L,

- Since L™ contains €, we must be careful to
ensure that there are productions in our
new CFG such that € can be derived from
the start variable

Union, Concatenation, and Kleene Star of CFLs

» Kleene star

> Formally
Gk — (Vk’ Z Rk’ k)
V=V, U{S,}

- S, is new start variable
¢ Rk: R] U{Sk%S]Sk |€}

p—

Union, Concatenation, and Kleene Star of CFLs

» Closure properties can be used in building
CFGs:

- Example:
- Find a CFG for L = {0'10% | j > i + k}
- Number of 1s is greater than the combined number of Os
on both sides

- This language can be expressed as
- L={0"1" 1m 1k0k | m > 0}

Union, Concatenation, and Kleene Star of CFLs

» Example:
> Find a CFG for L = {0'1i0% | j > i + k}

- This language can be expressed as
- L={011" 1™ 1k0k | m > 0}

- This is the concatenation of 3 languages L,L,L; where
- L, ={0'"1"| i = 0}
- L, ={1"| m > 0}
- Ly ={1k0k | k = 0}

Union, Concatenation, and Kleene Star of CFLs

» Example:
- CFG for L, ={0'1" | i = 0}
- A— 0Al | €
> CFG for L, ={1m™ | m > 0}
- B—= 1B | 1
> CFG for Ly = {1k0k | k = 0}
- C—=1CO0 | €

» CFG for L

> S — ABC

> A — OAl | €
- B—= 1B | 1
o C—=1CO0 | €

