


}  Recall – grammars comprise 
◦  Terminals (alphabet) 
◦  Variables 
◦  Start Variable 
◦  Rules 

}  Formally: 
◦  A grammar is a 4-tuple: (V, Σ, R, S) where 
�  V is a set of variables 
�  Σ is a set of terminals 
�  R is a set of production rules 
�  V and Σ are disjoint (i.e. V ∩ Σ = ∅) 
�  S ∈ V, is the start variable 



}  Recall 
◦  We say that a string w can be derived from a 

variable S if S can be transformed into w from a 
finite application of the rules, R, of the grammar 

◦  We say that the language of the grammar, L(G), is 
all strings that can be derived from the starting 
variable, S, by applying rules of the grammar. 
�  L(G) = { w ∈ Σ* | S ⇒* w} 

◦  A language L is a context-free language if and only 
if there is a grammar G such that L(G) = L. 



}  { wa | w ∈ {a,b}*}   (string has to end in a) 

}  { w ∈ {a,b}* | w has an even number of a’s} 

}  { aibjck | i=j, i,j,k ≥ 0 } 

}  { aibjck | i+j=k, i,j,k ≥ 0 } 

}  {w ∈ {a,b}* | |w| is odd and middle symbol is a} 



}  Note – to formally prove that the language of 
the grammar L(G), is in fact equal to the 
language described, L,  would typically 
require proving: 
◦  L ⊆ L(G) 
◦  L(G) ⊆ L 
◦  Using two separate inductive proofs  



}  CFLs are closed under union, concatenation, 
and Kleene star 

◦  If L1 and L2 are CFLs then 
�  L1 ∪ L2 is a CFL 
�  L1 L2 is a CFL 
�  L1

* is a CFL 

}  Later we will see that CFLs are not closed 
under intersection or complementation or 
difference 



}  Formally, Let L1 and L2 be CFLs.  Then there 
exist CFGs: 
◦  G1 = (V1, Σ, R1, S1)  
◦  G2 = (V2, Σ, R2, S2)  such that 
◦  L(G1) = L1  and L(G2) = L2 
◦  Assume that V1 ∩ V2  = ∅ 

}  We will define: 
◦  Gu = (Vu, Σ, Ru, Su)  such that L(Gu) = L1 ∪ L2 
◦  Gc = (Vc, Σ, Rc, Sc)  such that L(Gc) = L1 L2 
◦   Gk = (Vk, Σ, Rk, Sk)  such that L(Gc) = L1

* 



}  Union 
◦  General Idea 
�  Define the new CFG so that we can either 

�  start with the start variable of G1 and follow the 
production rules of G1 or  

�  start with the start variable of G2 and follow the 
production rules of G2 

�  The first case will derive a string in L1 
�  The second case will derive a string in L2 



}  Union 
◦ Formally 
� Gu = (Vu, Σ, Ru, Su) 
�  Vu = V1 ∪  V2 ∪ {Su} 
�  Su is new start variable 
�  Ru = R1 ∪ R2 ∪ {Su → S1 | S2 } 



}  Concatenation 
◦  General Idea 
�  Define the new CFG so that 

�  We force a derivation starting from the start variable of 
G1 using the rules of G1 

�  After that… 
�  We force a derivation starting from the start variable of 

G2 using the rules of G2 



}  Concatenation 
◦ Formally 
� Gc = (Vc, Σ, Rc, Sc) 
�  Vc = V1 ∪  V2 ∪ {Sc} 
�  Sc is new start variable 
�  Rc = R1 ∪ R2 ∪ {Sc → S1S2 } 



}  Kleene Star 
◦  General Idea 
�  Define the new CFG so that 

�  We can repeatedly concatenate derivations of 
strings in L1 

�  Since L* contains ε, we must be careful to 
ensure that there are productions in our 
new CFG such that ε can be derived from 
the start variable 



}  Kleene star 
◦ Formally 
� Gk = (Vk, Σ, Rk, Sk) 
�  Vk = V1 ∪ {Sk} 
�  Sk is new start variable 
�  Rk = R1 ∪ {Sk → S1Sk  | ε } 



}  Closure properties can be used in building 
CFGs: 
◦  Example: 
�  Find a CFG for L = {0i1j0k | j > i + k} 

�  Number of 1s is greater than the combined number of 0s 
on both sides  

�  This language can be expressed as 
�  L = {0i1i  1m  1k0k | m > 0} 



}  Example: 
◦  Find a CFG for L = {0i1j0k | j > i + k} 
�  This language can be expressed as 

�  L = {0i1i  1m  1k0k | m > 0} 
�  This is the concatenation of 3 languages L1L2L3 where 

�  L1 = {0i1i | i ≥ 0} 
�  L2 = {1m | m > 0} 
�  L3 = {1k0k | k ≥ 0} 



}  Example: 
◦  CFG for L1 = {0i1i | i ≥ 0} 
�  A → 0A1 | ε 
◦  CFG for  L2 = {1m | m > 0} 
�  B → 1B | 1 
◦  CFG for L3 = {1k0k | k ≥ 0} 
�  C → 1C0 | ε 

}  CFG for L 
◦  S → ABC 
◦  A → 0A1 | ε 
◦  B → 1B | 1 
◦  C → 1C0 | ε 


