


}  For the past several weeks, we have been 
looking at Regular Languages: 
◦  Means for defining: Regular Expression 
◦  Machine for accepting: Finite Automaton 



}  Venn diagram of languages 
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}  Context-Free Languages (CFL) 
◦  The next class of languages that we will discuss 
◦  Means for defining: Context-Free Grammar 
◦  Machine for accepting: Pushdown Automata 

◦  We will eventually show that CFLs are a superset of 
the class of regular languages 
�  Every regular language is also a CFL 
�  There are other languages in the class CFL as well 



}  Wikipedia says: 
◦  Languages can be described as a system of symbols 

and the grammars (rules) by which the symbols are 
manipulated 
◦  Grammar is the set of rules governing the use of 

language.  



}  Grammars defined for CS Theory: 

1.  Terminals = Set of symbols that form the strings of the 
language being defined (alphabet) 

2.  Variables = Set of symbols representing categories 

3.  Start Symbol = variable that represents the “base 
category” that defines the language 

4.  Substitution rules = set of rules that recursively define 
the language (also called productions) 



}  Grammar G: 
◦  A → 0A1 
◦  A → B 
◦  B → # 

}  Start Variable:  usually the variable on the left-hand side of the 
top rule  (A) 

}  Substitution Rules:  have a variable on the left, an arrow, and 
then a combination (string) of variables and other symbols called 
terminals on the right – note that this string can be empty 

}  Terminals:  these are the alphabet we’re used to 
}  Variables:  usually capital letters, a variable to the left of an 

arrow has an equivalent expression to the right of the arrow 

}  So – what language is described here?     L = {0k#1k | k ≥ 0} 

What are the variables? 
What are the terminals? 



}  Let’s formalize this a bit: 
◦  A grammar is a 4-tuple: (V, Σ, R, S) where 
�  V is a set of variables 
�  Σ is a set of terminals 
�  R is a set of productions 
�  V and Σ are disjoint (i.e. V ∩ Σ = ∅) 
�  S ∈ V, is the start symbol 

�  * NOTE – often we’ll define a grammar (like in our first 
example) just by listing the rules, as this completely 
defines the variables (on the left), terminals (all the 
other symbols on the right), start symbol (left side of 
first rule). 



}  Grammar G: 
◦  A → 0A1 
◦  A → B 
◦  B → # 

}  G = (V, Σ, R, S)  
◦  V = {A,B} 
◦  Σ = {0,1,#} 
◦  R = rules above 
◦  S = A 

}  G could also be written as:  A → 0A1 | # 
◦  | is used to indicate ‘or’  
◦  B is superfluous in this example; can just be directly substituted with # 



}  Substitution Rules / Productions 
◦  Of the form A → β 
�  A is a variable 
�  β is a string, combining terminals and variables (can be 

empty) 
�  To apply a rule, replace an occurrence of A with the string β. 

◦  We say that the grammar is context-free since this 
substitution can take place regardless of where A is 
(as part of a longer string). 
�  Another explanation of context-free is that only a 

single variable is allowed on the left-hand side of any 
production rule. 



}  Substitution Rules / Productions: 
◦  We say that γ can be derived from α in one step if: 
�  A → β is a rule 
�  α = α1A α2 
�  γ = α1 β α2 

◦  We write α ⇒ γ 
◦  We write α ⇒* γ if γ can be derived from α in zero or 

more steps.  

◦  NOTE that we use → to refer to a rule, and we use ⇒ 
to refer to a derivation involving application of the 
rule on a particular string  



}  The language generated by a grammar: 
◦  Let G = (V, Σ, R, S) 

◦  L(G) is the language generated by G 
�  L(G) = { w ∈ Σ* | S ⇒* w} 
�  Any string (just terminals) obtained from a finite 

application of the rules of the grammar 

}  A language A is a Context-Free Language 
(CFL) if and only if there is a CFG G, such that:   
�  A = L(G) 



}  Recursive definition for palindromes (pal) 
over Σ: 

1.   ε ∈ pal 

2.   For any a ∈ Σ, a ∈ pal 

3.   For any x ∈ pal and a ∈ Σ, axa ∈ pal 

4.   No string is in pal unless it can be obtained by 
rules 1-3  

 



}  A CFG for palindromes over {a,b} 
◦  Define the rules R: 
◦  Base cases: 
�  P → ε    (rule 1) 
�  P → a    (rule 2) 
�  P → b        (rule 3) 
◦  Recursion 
�  P → aPa     (rule 4) 
�  P → bPb     (rule 5) 

 



}  Building the palindrome abba using grammar 
}  Recall that any string that can be formed by a 

finite application of the rules is a member of 
the language of the grammar 

◦  P ⇒ aPa      (rule 4) 
◦  aPa ⇒ abPba        (rule 5) 
◦  abPba ⇒ ab ε ba     (rule 1) 

◦  P ⇒* abba 



}  Find a CFG to describe: 
◦  L = {a,b}* 

}  Find a CFG to describe: 
◦  L = ∅ 

 
}  Find a CFG to describe: 
◦  L = {w ∈ {a,b}* | w has at least 2 b’s} 

}  Find a CFG to describe: 
◦  L = {w ∈ {a,b}* |  |w| is even} 

 

These are all regular 
languages.  We’ll show 
later that every regular 
language can be described 
with a context-free 
grammar  



}  Find a CFG to describe: 
◦  L = {w ∈ {0,1}* | n0(w) = n1(w)} 
 
◦  Basic idea (define recursively) 
�  ε is certainly in the language 
�  For all strings in the language, if we add a 0 and 1 to 

the string, the result is in the language. 
�  Just consider all the different ways to add a 0 and 1 

�  S → ε | 01S | 10S | 0S1 | 1S0 | S01 | S10 

�  Clearly every string in L(G) will have equal 1’s and 0’s, but 
have we captured all such strings? 
�  What about 00111100 ? 



}  Find a CFG to describe: 
◦  L = {w ∈ {0,1}* | n0(w) = n1(w)} 

◦  Basic idea (define recursively) 
�  ε is certainly in the language 
�  For all strings in the language, if we add a 0 to one 

end, and a 1 to the other end of the string, the result is 
in the language. 

�  The concatenation of any two strings in the language 
will also be in the language  



}  Find a CFG to describe: 
◦  L = {w ∈ {0,1}* | n0(w) = n1(w)} 

�  S → ε   (rule 1) 
�  S → 0S1    (rule 2) 
�  S → 1S0    (rule 3) 
�  S → SS      (rule 4) 
◦  Why does this work? 

�  One work to think of it is to consider what w ∈ L looks like and break it back down 
�  If it’s ε then we’re ok 
�  Or it has a 0 on one end and a 1 on the other, in which case it was built up by rule 2 or 3 from 

a smaller string 
�  Or it has the same symbol on each end, in which case there must be some dividing point in the 

middle of the string where each portion of the string has equal 0’s and 1’s 
�  Why?  Because to start the string you see a 0 and now your counter is at one extra 0.  By the time 

you get to the last symbol your counter is at -1 extra 0’s.  It must have crossed equal somewhere.  



}  Let’s derive a string from L 
◦  00111100 
◦  S  ⇒ SS                       rule 4 
      ⇒ 0S1 S              rule 2 
     ⇒ 0S1 1S0              rule 3 
      ⇒ 00S11  1S0     rule 2 
     ⇒ 00S11  11S00     rule 3 
      ⇒ 00 ε 11  11 ε 00   rule 1 
      = 00111100  



}  Let’s derive a string from L 
◦  00110011 
◦  S  ⇒ SS                       rule 4 
      ⇒ 0S1 0S1              rule 2 
      ⇒ 00S11  00S11     rule 2 
      ⇒ 00 ε 11  00 ε 11   rule 1 
      = 00110011  
or 
◦  S  ⇒ 0S1                     rule 2 
      ⇒ 00S11              rule 2 
      ⇒ 001S011      rule 3 
      ⇒ 0011S0011    rule 3 
      ⇒ 0011ε0011     rule 1 
      = 00110011 
 



}  Find a CFG to describe: 
◦  L = {aibjck | i = k} 
�  Number of a’s equals the number of c’s with any 

number of b’s between them 
�  Use variable B to represent bj 

�  Every time you add a to the left of B you need to add c 
to the right. 



}  Find a CFG to describe: 
◦  L = {aibjck | i = k} 
�  S → B         (rule 1) 
�  S → aSc      (rule 2) 
�  B → bB        (rule 3) 
�  B → ε          (rule 4) 

◦  Can also write as 
�  S → B | aSc 
�  B → bB | ε 



}  Let’s derive a string from L:  aabbbcc 
◦  S ⇒ aSc             rule 2 
     ⇒ aaScc              rule 2 
     ⇒ aaBcc              rule 1 
     ⇒ aabBcc            rule 3 
     ⇒ aabbBcc          rule 3 
     ⇒ aabbbBcc        rule 3 
     ⇒ aabbb ε cc      rule 4  
     = aabbbcc  


