Non-Regular Languages: the Pumping Lemma

Non-Regular Languages

Recall previously:

- Used Myhill-Nerode Theorem as a tool to show that some languages are not regular
 - (Prove that there is an infinite set of pairwise distinguishable strings)
- We will discuss one additional method for showing that a language is not regular

- The pumping lemma formalizes the idea that if a string from a regular language is long enough, eventually at least one state from its DFA will have to be repeated on the path that accepts the string.
 - Implies that there is a Kleene star in there somewhere!
- Continually looping (pumping) on this state will produce an infinite number of strings in the language

The Pumping Lemma Visually

- Consider a string $s = a_1 a_2 a_3 \dots a_m \in L$
- Suppose s is a long string comprising at least as many symbols as the DFA for language L has states
 - At least one state must be visited twice

The Pumping Lemma Visually

- Let r_i be the first repeated state as the string s is processed
- Let a_i be the symbol that puts the DFA in state r_i for the first time
- We can divide the string into 3 pieces:
 - Symbols leading up to the first repeat state
 - Symbols that complete a loop back to the first repeat state
 - Symbols comprising the remainder of the string

- Let L be a regular language
- Then there exists a constant p (which varies for different languages), such that for every string s ∈ L with |s| ≥ p, s can be expressed as s = xyz such that:
 - |y| > 0
 - $|xy| \le p$
 - For all $k \ge 0$, the string $xy^k z$ is also in L.

- What does p correspond to?
 - The number of states in the DFA
- What does y correspond to?
 - The symbols in the loop
- Why is |y| > 0?
 - The looping portion must involve processing at least one symbol
- Why is $|xy| \le p$?
 - Because the first loop completes when a state is visited for the second time. If p is at least as large as the number of states of the DFA, a state must be visited twice after processing p symbols (which involves visiting p+1 total states, including the start state).
- Why is $xy^k z$ also in L for all $k \ge 0$?
 - Because you can take the loop an arbitrary number of times, including 0!

- ▶ Can |x| = 0?
 - Yes x can be the empty string
- What does this correspond to?
 - The loop beginning at the start state
- ► Can |z| = 0?
 - Yes z can be the empty string
- What does this correspond to?
 - The loop occurring at the accepting state

What this means:

- For a long enough string s in L:
 - We can express s as the concatenation of three smaller strings
 - The middle string can be "pumped" (repeated) any number of times (including 0 = deleting) and the resulting string will be in L.

Proof of the pumping lemma

- Since L is regular, there is a DFA M=(Q, Σ , δ , q₀, F) that accepts L.
 - Assume M has p states.
- Consider a string $s \in L$ with $|s| = m \ge p$.
 - Express $s = a_1 a_2 a_3 \dots a_m$ where each $a_i \in \Sigma$.
- Define r_i to be the state M is in after reading i symbols:
 - $r_i = \delta^* (q_0, a_1 a_2 ... a_i)$
 - $r_0 = q_0$

Proof of the pumping lemma

- Since $|s| \ge p$, and there are only p states, one state on its path must be visited more than once.
 - There exist integers i and j, 0 ≤ i < j ≤ p ≤ m such that r_i = r_j
 - Then s = xyz
 - $x = a_1 a_2 ... a_i$
 - $y = a_{i+1}a_{i+2}...a_j$

- What good is the pumping lemma?
- The <u>real</u> strength of the pumping lemma is proving that languages are not regular
 - Proof by contradiction
 - Assume that the language to be tested is regular
 - Use the pumping lemma to come to a contradiction
 - Original assumption about the language being regular is false
- You <u>cannot</u> prove a language <u>to be</u> regular using the Pumping Lemma!

To show that a language L is not regular

- PROOF BY CONTRADICTION
- Assume L is regular
- Choose an "appropriate" string s in L
 - In terms of p (number of states in DFA)
- Express s = xyz following rules of pumping lemma
- Show that xy^kz is not in L, for some k
- The above contradicts the Pumping Lemma
- The assumption that L is regular is wrong
- L must not be regular

- Example:
 - $\circ \ L=\{a^kb^k \ | \ k \ge 0\}$
 - Assume that L is regular.
 - Then there is a DFA, M that accepts L.
 - Let p be the number of states in M
 - Choose an appropriate string $s \in L$
 - Let $s = a^p b^p$
 - Apply Pumping Lemma to s
 - s = xyz
 - |xy| ≤ p
 - |y| > 0

- $s = xyz = a^pb^p$
 - aa ... a bb ... b
 - Since |xy| ≤ p, xy must consist entirely of a's and, as such, y must also consist entirely of a's.
 y = a^j for some 0 < j ≤ p

- $s = xyz = a^pb^p = a^ia^ja^kb^p$ where i+j+k = p
 - By the Pumping Lemma
 - xy²z is also in L
 - $xy^2z = a^ia^{2j}a^kb^p$
 - But $i + 2j + k \neq p$ (since j > 0)
 - xy²z has more a's that b's
 - Thus $xy^2z \notin L$ CONTRADICTION!

• We arrived at a contradiction,

- Thus our original assumption that L is regular must be incorrect
- Thus L is not regular.

Note that we need to find only 1 string s that fails in order for the proof by contradiction to work.

• The key is finding the s that does the job

- Remember the wording of the lemma:
 - FOR ALL strings $s \in L$ that are long enough,
 - **THERE EXISTS** a decomposition s = xyz
 - Such that $xy^k z$ is in the language FOR ALL $k \ge 0$ (and other properties hold too)
- So to show that a language is NOT regular by contradiction, we assume that it is regular and then show that:
 - **THERE EXISTS** string $s \in L$ that is long enough (just need 1!)
 - NO MATTER how we decompose s = xyz (we have to cover ALL legitimate decompositions!)
 - xy^kz is NOT in the language FOR SOME k ≥ 0 (we just have to show 1 case that isn't in the language!)

Another Example:

- $L = \{0^{i}w \mid |w| \le i, w \in \{0,1\}^{*}\}$
- Ex: 0001, 0010, 0000101
- Assume that L is regular.
 - Then there is a DFA, M, that accepts L.
 - Let p be the number of states in M

- Another Example:
 - $L = \{0^{i}w \mid |w| \le i, w \in \{0,1\}^{*}\}$
 - \circ Choose an appropriate string $s \in L$
 - Let $s = 0^{p}1^{p}$
 - Apply Pumping Lemma to s
 - s = xyz
 - |xy| ≤ p
 - |y| > 0

- $s = xyz = 0^{p}1^{p}$
 - · 00 ... 0 11 ... 1
 - Since |xy| ≤ p, xy must consist entirely of 0's and, as such, y must also consist entirely of 0's.
 y = 0^j for some j ≤ p

- $s = xyz = 0^{p}1^{p} = 0^{i}0^{j}0^{k}1^{p}$ where i+j+k = p
 - By the Pumping Lemma
 - xy⁰z is also in L
 - $xy^{0}z = xz = 0^{i}0^{k}1^{p}$
 - But p > i + k
 - The length of the prefix of 0's is less than the suffix w
 - Thus $xy^0z \notin L$ CONTRADICTION!

• We arrived at a contradiction,

- Thus our original assumption that L is regular must be incorrect
- Thus L is not regular.

Note that we need to find only 1 string s that fails in order for the proof by contradiction to work.

• We can show s fails when pumping 0 times

- Another example:
 - L = set of palindromes over {a,b}
 - Strings that read the same forwards and backwards
 - Ex: aa, abba, abbbbba, e
 - Assume that L is regular.
 - Then there is a DFA, M that accepts L.
 - Let p be the number of states in M

- Another Example:
 - L = set of palindromes over {a,b}
 - $\circ\,$ Choose an appropriate string s \in L
 - Let $s = a^p b a^p$
 - Apply Pumping Lemma to s
 - s = xyz
 - |xy| ≤ p
 - |y| > 0

- $\mathbf{s} = \mathbf{x}\mathbf{y}\mathbf{z} = \mathbf{a}^{\mathbf{p}}\mathbf{b}\mathbf{a}^{\mathbf{p}}$
 - aa ... a b aa ... a
 - Since |xy| ≤ p, xy must consist entirely of a's and, as such, y must also consist entirely of a's.
 y = a^j for some j ≤ p

• $s = xyz = a^pba^p = a^ia^ja^kba^p$ where i+j+k = p

By the Pumping Lemma

- xy²z is also in L
- xy²z has more than p a's at the start
- Number of a's following b is still p
- Thus xy²z cannot be a palindrome
 - Thus $xy^2z \notin L$ CONTRADICTION!

Summary

- The pumping lemma formalizes the idea that for a regular language, if an accepted string is long enough, eventually at least one state from the DFA will be have to be repeated on the path that accepts the string.
- Continually looping on this state will produce an infinite number of strings in the language
- Used to show that languages are not regular