


}  Recall previously: 
◦  Used Myhill–Nerode Theorem as a tool to show that 

some languages are not regular 
�  (Prove that there is an infinite set of pairwise 

distinguishable strings) 

}  We will discuss one additional method for 
showing that a language is not regular 



}  The pumping lemma formalizes the idea 
that if a string from a regular language is 
long enough, eventually at least one state 
from its DFA will have to be repeated on the 
path that accepts the string. 
◦  Implies that there is a Kleene star in there 

somewhere! 
}  Continually looping (pumping) on this state 

will produce an infinite number of strings in 
the language 



}  Consider a string s = a1a2a3…am ∈ L 
}  Suppose s is a long string – comprising at 

least as many symbols as the DFA for 
language L has states 
◦  At least one state must be visited twice 

r0 ri 
x = a1a2a3…ai 

y = ai+1ai+2ai+3…aj 

z = aj+1aj+2…am 



}  Let ri be the first repeated state as the string s is processed 
}  Let ai be the symbol that puts the DFA in state ri for the first time 
}  We can divide the string into 3 pieces: 
◦  Symbols leading up to the first repeat state 
◦  Symbols that complete a loop back to the first repeat state 
◦  Symbols comprising the remainder of the string 

r0 ri 
x = a1a2a3…ai 

y = ai+1ai+2ai+3…aj 

z = aj+1aj+2…am 



}  Let L be a regular language 
}  Then there exists a constant p (which varies 

for different languages), such that for every 
string s ∈ L with |s| ≥ p, s can be expressed 
as s = xyz such that: 
◦  |y| > 0 
◦  |xy| ≤ p 
◦  For all k ≥ 0, the string xykz is also in L. 



}  What does p correspond to? 
◦  The number of states in the DFA 

}  What does y correspond to? 
◦  The symbols in the loop 

}  Why is |y| > 0? 
◦  The looping portion must involve processing at least one symbol 

}  Why is |xy| ≤ p? 
◦  Because the first loop completes when a state is visited for the 

second time.  If p is at least as large as the number of states of 
the DFA, a state must be visited twice after processing p symbols 
(which involves visiting p+1 total states, including the start state). 

}  Why is xykz also in L for all k ≥ 0? 
◦  Because you can take the loop an arbitrary number of times, 

including 0! 



}  Can |x| = 0? 
◦  Yes – x can be the empty string 

}  What does this correspond to? 
◦  The loop beginning at the start state 

}  Can |z| = 0? 
◦  Yes – z can be the empty string 

}  What does this correspond to? 
◦  The loop occurring at the accepting state 



}  What this means: 
◦  For a long enough string s in L: 
�  We can express s as the concatenation of three smaller 

strings 
�  The middle string can be “pumped” (repeated) any 

number of times (including 0 = deleting) and the 
resulting string will be in L. 



}  Proof of the pumping lemma 
◦  Since L is regular, there is a DFA M=(Q, Σ, δ, q0, F) 

that accepts L.  
�  Assume M has p states. 
◦  Consider a string s ∈ L with |s| = m ≥ p. 
�  Express s = a1a2a3 … am   where each ai ∈ Σ. 
◦  Define ri to be the state M is in after reading i 

symbols: 
�  ri = δ* (q0, a1a2…ai) 
�  r0 = q0 
 



}  Proof of the pumping lemma 
◦  Since |s| ≥ p, and there are only p states, one 

state on its path must be visited more than once. 
�  There exist integers i and j,  0 ≤ i < j ≤ p ≤ m such 

that ri = rj 
�  Then s = xyz 

�  x = a1a2…ai 
�  y = ai+1ai+2…aj 
�  z = aj+1aj+2…am 

r0 ri 
x = a1a2a3…ai 

y = ai+1ai+2ai+3…aj 

z = aj+1aj+2…am 



}  What good is the pumping lemma? 
}  The real strength of the pumping lemma is 

proving that languages are not regular 
◦  Proof by contradiction 
�  Assume that the language to be tested is regular 
�  Use the pumping lemma to come to a contradiction 
�  Original assumption about the language being regular is 

false 
}  You cannot prove a language to be regular 

using the Pumping Lemma! 



}  To show that a language L is not regular 
◦  PROOF BY CONTRADICTION 
◦  Assume L is regular 
◦  Choose an “appropriate” string s in L 
�  In terms of p (number of states in DFA) 
◦  Express s = xyz following rules of pumping lemma 
◦  Show that xykz is not in L, for some k 
◦  The above contradicts the Pumping Lemma 
◦  The assumption that L is regular is wrong 
◦  L must not be regular 



}  Example: 
◦  L = {akbk | k ≥ 0} 
 
◦  Assume that L is regular.   
�  Then there is a DFA, M that accepts L.   
�  Let p be the number of states in M 
�  Choose an appropriate string s ∈ L 

�  Let s = apbp 

�  Apply Pumping Lemma to s 
�  s = xyz 
�  |xy| ≤ p 
�  |y| > 0 



}  s = xyz = apbp 

◦  aa … a  bb … b 

◦  Since |xy| ≤ p, xy must consist entirely of a’s and, 
as such, y must also consist entirely of a’s. 
�  y = aj  for some 0 < j ≤ p 



}  s = xyz = apbp = aiajakbp   where i+j+k = p 
◦  By the Pumping Lemma 
�  xy2z is also in L 
�  xy2z = aia2jakbp 
�  But i + 2j + k ≠ p  (since j > 0) 
�  xy2z has more a’s that b’s 
�  Thus xy2z ∉ L  CONTRADICTION! 



}  We arrived at a contradiction, 
◦  Thus our original assumption that L is regular 

must be incorrect 
◦  Thus L is not regular. 

}  Note that we need to find only 1 string s 
that fails in order for the proof by 
contradiction to work. 
◦  The key is finding the s that does the job 



}  Remember the wording of the lemma: 
◦  FOR ALL strings s ∈ L that are long enough, 
◦  THERE EXISTS a decomposition s = xyz 
◦  Such that xykz is in the language FOR ALL k ≥ 0 (and other 

properties hold too) 
}  So to show that a language is NOT regular by 

contradiction, we assume that it is regular and then 
show that: 
◦  THERE EXISTS string s ∈ L that is long enough (just need 1!) 
◦  NO MATTER how we decompose s = xyz (we have to cover 

ALL legitimate decompositions!) 
◦  xykz is NOT in the language FOR SOME k ≥ 0 (we just have to 

show 1 case that isn’t in the language!) 



}  Another Example: 
◦  L = {0iw | |w| ≤ i, w ∈ {0,1}*} 
◦  Ex: 0001, 0010, 0000101 

◦  Assume that L is regular.   
�  Then there is a DFA, M, that accepts L.   
�  Let p be the number of states in M 



}  Another Example: 
◦  L = {0iw | |w| ≤ i, w ∈ {0,1}*} 

◦  Choose an appropriate string s ∈ L 
�  Let s = 0p1p 

◦  Apply Pumping Lemma to s 
�  s = xyz 
�  |xy| ≤ p 
�  |y| > 0  



}  s = xyz = 0p1p 

◦  00 … 0  11 … 1 

◦  Since |xy| ≤ p, xy must consist entirely of 0’s and, 
as such, y must also consist entirely of 0’s. 
�  y = 0j  for some j ≤ p 



}  s = xyz = 0p1p = 0i0j0k1p   where i+j+k = p 

◦  By the Pumping Lemma 
�  xy0z is also in L 
�  xy0z = xz = 0i0k1p 
�  But p > i + k  
�  The length of the prefix of 0’s is less than the suffix w 
�  Thus xy0z ∉ L  CONTRADICTION! 



}  We arrived at a contradiction, 
◦  Thus our original assumption that L is regular 

must be incorrect 
◦  Thus L is not regular. 

}  Note that we need to find only 1 string s 
that fails in order for the proof by 
contradiction to work. 
◦  We can show s fails when pumping 0 times 



}  Another example: 
◦  L = set of palindromes over {a,b} 
�  Strings that read the same forwards and backwards 
◦  Ex: aa, abba, abbbbba, ε 

◦  Assume that L is regular.   
�  Then there is a DFA, M that accepts L.   
�  Let p be the number of states in M 



}  Another Example: 
◦  L = set of palindromes over {a,b} 

◦  Choose an appropriate string s ∈ L 
�  Let s = apbap 

◦  Apply Pumping Lemma to s 
�  s = xyz 
�  |xy| ≤ p 
�  |y| > 0  



}  s = xyz = apbap 

◦  aa … a  b aa … a 

◦  Since |xy| ≤ p, xy must consist entirely of a’s and, 
as such, y must also consist entirely of a’s. 
�  y = aj  for some j ≤ p 



}  s = xyz = apbap = aiajakbap   where i+j+k = p 

}  By the Pumping Lemma 
◦  xy2z is also in L 
◦  xy2z has more than p a’s at the start 
◦  Number of a’s following b is still p 
◦  Thus xy2z cannot be a palindrome 
�  Thus xy2z ∉ L  CONTRADICTION! 



}  Summary 
◦  The pumping lemma formalizes the idea that for 

a regular language, if an accepted string is long 
enough, eventually at least one state from the 
DFA will be have to be repeated on the path that 
accepts the string. 
◦  Continually looping on this state will produce an 

infinite number of strings in the language 
◦  Used to show that languages are not regular 


