

}  Recall previously:
◦  Used Myhill–Nerode Theorem as a tool to show that

some languages are not regular
�  (Prove that there is an infinite set of pairwise

distinguishable strings)

}  We will discuss one additional method for
showing that a language is not regular

}  The pumping lemma formalizes the idea
that if a string from a regular language is
long enough, eventually at least one state
from its DFA will have to be repeated on the
path that accepts the string.
◦  Implies that there is a Kleene star in there

somewhere!
}  Continually looping (pumping) on this state

will produce an infinite number of strings in
the language

}  Consider a string s = a1a2a3…am ∈ L
}  Suppose s is a long string – comprising at

least as many symbols as the DFA for
language L has states
◦  At least one state must be visited twice

r0 ri
x = a1a2a3…ai

y = ai+1ai+2ai+3…aj

z = aj+1aj+2…am

}  Let ri be the first repeated state as the string s is processed
}  Let ai be the symbol that puts the DFA in state ri for the first time
}  We can divide the string into 3 pieces:
◦  Symbols leading up to the first repeat state
◦  Symbols that complete a loop back to the first repeat state
◦  Symbols comprising the remainder of the string

r0 ri
x = a1a2a3…ai

y = ai+1ai+2ai+3…aj

z = aj+1aj+2…am

}  Let L be a regular language
}  Then there exists a constant p (which varies

for different languages), such that for every
string s ∈ L with |s| ≥ p, s can be expressed
as s = xyz such that:
◦  |y| > 0
◦  |xy| ≤ p
◦  For all k ≥ 0, the string xykz is also in L.

}  What does p correspond to?
◦  The number of states in the DFA

}  What does y correspond to?
◦  The symbols in the loop

}  Why is |y| > 0?
◦  The looping portion must involve processing at least one symbol

}  Why is |xy| ≤ p?
◦  Because the first loop completes when a state is visited for the

second time. If p is at least as large as the number of states of
the DFA, a state must be visited twice after processing p symbols
(which involves visiting p+1 total states, including the start state).

}  Why is xykz also in L for all k ≥ 0?
◦  Because you can take the loop an arbitrary number of times,

including 0!

}  Can |x| = 0?
◦  Yes – x can be the empty string

}  What does this correspond to?
◦  The loop beginning at the start state

}  Can |z| = 0?
◦  Yes – z can be the empty string

}  What does this correspond to?
◦  The loop occurring at the accepting state

}  What this means:
◦  For a long enough string s in L:
�  We can express s as the concatenation of three smaller

strings
�  The middle string can be “pumped” (repeated) any

number of times (including 0 = deleting) and the
resulting string will be in L.

}  Proof of the pumping lemma
◦  Since L is regular, there is a DFA M=(Q, Σ, δ, q0, F)

that accepts L.
�  Assume M has p states.
◦  Consider a string s ∈ L with |s| = m ≥ p.
�  Express s = a1a2a3 … am where each ai ∈ Σ.
◦  Define ri to be the state M is in after reading i

symbols:
�  ri = δ* (q0, a1a2…ai)
�  r0 = q0

}  Proof of the pumping lemma
◦  Since |s| ≥ p, and there are only p states, one

state on its path must be visited more than once.
�  There exist integers i and j, 0 ≤ i < j ≤ p ≤ m such

that ri = rj
�  Then s = xyz

�  x = a1a2…ai
�  y = ai+1ai+2…aj
�  z = aj+1aj+2…am

r0 ri
x = a1a2a3…ai

y = ai+1ai+2ai+3…aj

z = aj+1aj+2…am

}  What good is the pumping lemma?
}  The real strength of the pumping lemma is

proving that languages are not regular
◦  Proof by contradiction
�  Assume that the language to be tested is regular
�  Use the pumping lemma to come to a contradiction
�  Original assumption about the language being regular is

false
}  You cannot prove a language to be regular

using the Pumping Lemma!

}  To show that a language L is not regular
◦  PROOF BY CONTRADICTION
◦  Assume L is regular
◦  Choose an “appropriate” string s in L
�  In terms of p (number of states in DFA)
◦  Express s = xyz following rules of pumping lemma
◦  Show that xykz is not in L, for some k
◦  The above contradicts the Pumping Lemma
◦  The assumption that L is regular is wrong
◦  L must not be regular

}  Example:
◦  L = {akbk | k ≥ 0}

◦  Assume that L is regular.
�  Then there is a DFA, M that accepts L.
�  Let p be the number of states in M
�  Choose an appropriate string s ∈ L

�  Let s = apbp

�  Apply Pumping Lemma to s
�  s = xyz
�  |xy| ≤ p
�  |y| > 0

}  s = xyz = apbp

◦  aa … a bb … b

◦  Since |xy| ≤ p, xy must consist entirely of a’s and,
as such, y must also consist entirely of a’s.
�  y = aj for some 0 < j ≤ p

}  s = xyz = apbp = aiajakbp where i+j+k = p
◦  By the Pumping Lemma
�  xy2z is also in L
�  xy2z = aia2jakbp
�  But i + 2j + k ≠ p (since j > 0)
�  xy2z has more a’s that b’s
�  Thus xy2z ∉ L CONTRADICTION!

}  We arrived at a contradiction,
◦  Thus our original assumption that L is regular

must be incorrect
◦  Thus L is not regular.

}  Note that we need to find only 1 string s
that fails in order for the proof by
contradiction to work.
◦  The key is finding the s that does the job

}  Remember the wording of the lemma:
◦  FOR ALL strings s ∈ L that are long enough,
◦  THERE EXISTS a decomposition s = xyz
◦  Such that xykz is in the language FOR ALL k ≥ 0 (and other

properties hold too)
}  So to show that a language is NOT regular by

contradiction, we assume that it is regular and then
show that:
◦  THERE EXISTS string s ∈ L that is long enough (just need 1!)
◦  NO MATTER how we decompose s = xyz (we have to cover

ALL legitimate decompositions!)
◦  xykz is NOT in the language FOR SOME k ≥ 0 (we just have to

show 1 case that isn’t in the language!)

}  Another Example:
◦  L = {0iw | |w| ≤ i, w ∈ {0,1}*}
◦  Ex: 0001, 0010, 0000101

◦  Assume that L is regular.
�  Then there is a DFA, M, that accepts L.
�  Let p be the number of states in M

}  Another Example:
◦  L = {0iw | |w| ≤ i, w ∈ {0,1}*}

◦  Choose an appropriate string s ∈ L
�  Let s = 0p1p

◦  Apply Pumping Lemma to s
�  s = xyz
�  |xy| ≤ p
�  |y| > 0

}  s = xyz = 0p1p

◦  00 … 0 11 … 1

◦  Since |xy| ≤ p, xy must consist entirely of 0’s and,
as such, y must also consist entirely of 0’s.
�  y = 0j for some j ≤ p

}  s = xyz = 0p1p = 0i0j0k1p where i+j+k = p

◦  By the Pumping Lemma
�  xy0z is also in L
�  xy0z = xz = 0i0k1p
�  But p > i + k
�  The length of the prefix of 0’s is less than the suffix w
�  Thus xy0z ∉ L CONTRADICTION!

}  We arrived at a contradiction,
◦  Thus our original assumption that L is regular

must be incorrect
◦  Thus L is not regular.

}  Note that we need to find only 1 string s
that fails in order for the proof by
contradiction to work.
◦  We can show s fails when pumping 0 times

}  Another example:
◦  L = set of palindromes over {a,b}
�  Strings that read the same forwards and backwards
◦  Ex: aa, abba, abbbbba, ε

◦  Assume that L is regular.
�  Then there is a DFA, M that accepts L.
�  Let p be the number of states in M

}  Another Example:
◦  L = set of palindromes over {a,b}

◦  Choose an appropriate string s ∈ L
�  Let s = apbap

◦  Apply Pumping Lemma to s
�  s = xyz
�  |xy| ≤ p
�  |y| > 0

}  s = xyz = apbap

◦  aa … a b aa … a

◦  Since |xy| ≤ p, xy must consist entirely of a’s and,
as such, y must also consist entirely of a’s.
�  y = aj for some j ≤ p

}  s = xyz = apbap = aiajakbap where i+j+k = p

}  By the Pumping Lemma
◦  xy2z is also in L
◦  xy2z has more than p a’s at the start
◦  Number of a’s following b is still p
◦  Thus xy2z cannot be a palindrome
�  Thus xy2z ∉ L CONTRADICTION!

}  Summary
◦  The pumping lemma formalizes the idea that for

a regular language, if an accepted string is long
enough, eventually at least one state from the
DFA will be have to be repeated on the path that
accepts the string.
◦  Continually looping on this state will produce an

infinite number of strings in the language
◦  Used to show that languages are not regular

