Algorithmic DFA Minimization

Based on slides of Aaron Deever

Computing the Minimal Finite Automaton

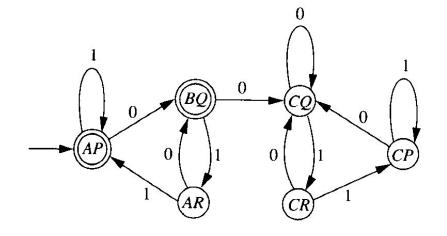
- Equivalent States
 - $M = (Q, \Sigma, \delta^*, q_0, F)$
 - Two states, p, $q \in Q$ are said to be <u>indistinguishable</u> if
 - + For all strings $x \in \Sigma^*$
 - If δ^* (p, x) is an accepting state then δ^* (q, x) is an accepting state
 - If δ^* (p, x) is not an accepting state then δ^* (q, x) is not an accepting state

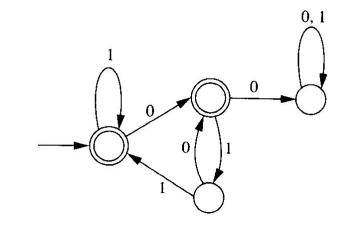
Computing the Minimal Finite Automaton

- Equivalent States
 - $M = (Q, \Sigma, \delta^*, q_0, F)$
 - If two states are not <u>indistinguishable</u>, they are said to be <u>distinguishable</u>.
 - There is a string z such that
 - > δ^* (p, z) is an accepting state and δ^* (q, z) is a non-accepting state OR
 - δ^* (p, z) is a non-accepting state and δ^* (q, z) is an accepting state

Computing the Minimal Finite Automaton

- Equivalent States
 - In building a minimal DFA, <u>indistinguishable</u> states can be combined.

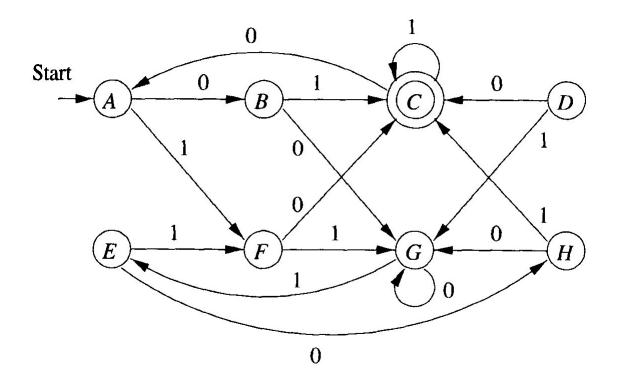




Original DFA

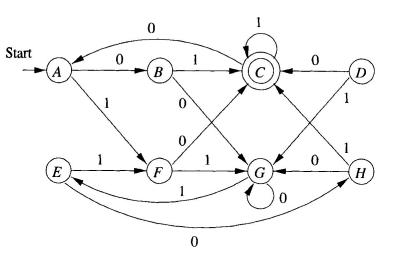
Minimal DFA

Example



• Example:

- States C and G are distinguishable
 - One is accepting, one is not
- States A and G are distinguishable
 - δ^* (A, 01) = C (accepting)
 - δ^* (G, 01) = E (non-accepting)

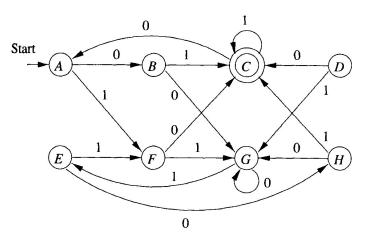


Example:

- States B and H are equivalent
 - B and H both non-accepting
 - δ^* (B, 1) = δ^* (H, 1) = C
 - $\delta^*(B, 1x) = \delta^*(H, 1x)$ for any x

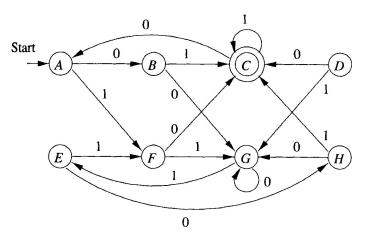
•
$$\delta^*$$
 (B, 0) = δ^* (H, 0) = G

- δ^* (B, 0x) = δ^* (E, 0x) for any x
- So for any x, δ^* (B, x) and δ^* (H, x) will either both be accepting or both be non-accepting.



Example:

- States A and E are equivalent
 - A and E both non-accepting
 - δ^* (A, 1) = δ^* (E, 1) = F
 - δ^* (A, 1x) = δ^* (E, 1x) for any x
 - δ^* (A, 0) = B, δ^* (E, 0) = H
 - B and H are equivalent
 - δ^* (A, 0x) and δ^* (E, 0x) will either both be accepting or both be non-accepting.



- Algorithm to find distinguishable states:
 - Consider pairs {p,q}
 - For each pair we will determine whether p is distinguishable from q
 - Said another way, for each pair {p,q} we will determine if p is not equivalent to q.

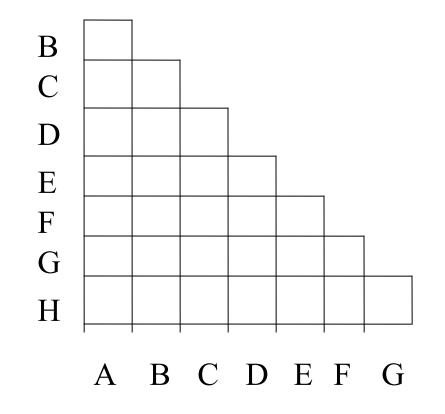
Iterative algorithm

- Initialization:
 - If p is accepting and q is non-accepting then {p,q} is distinguishable
- General Case:
 - For some pair {p,q} if
 - δ^* (p,a) = r and δ^* (q,a) = s and
 - {r,s} is distinguishable then
 - {p,q} is distinguishable

- Let's take a look at this general case:
 - If $r = \delta^*$ (p,a) and $s = \delta^*$ (q,a) are distinguishable, then there is a string x such that δ^* (r,x) is accepting and δ^* (s,x) is not, or vice-versa
 - $\circ\,$ Then for x, δ^* (p,ax) is accepting and δ^* (q,ax) is not, or vice-versa.
 - We found a string, ax such that δ* (p,ax) is accepting and (q,ax) is not (or vice-versa), thus {p,q} are distinguishable

This algorithm can be visualized by using a table with each table cell representing a pair of states. A mark in a table cell indicates that the two states of the pair are distinguishable.

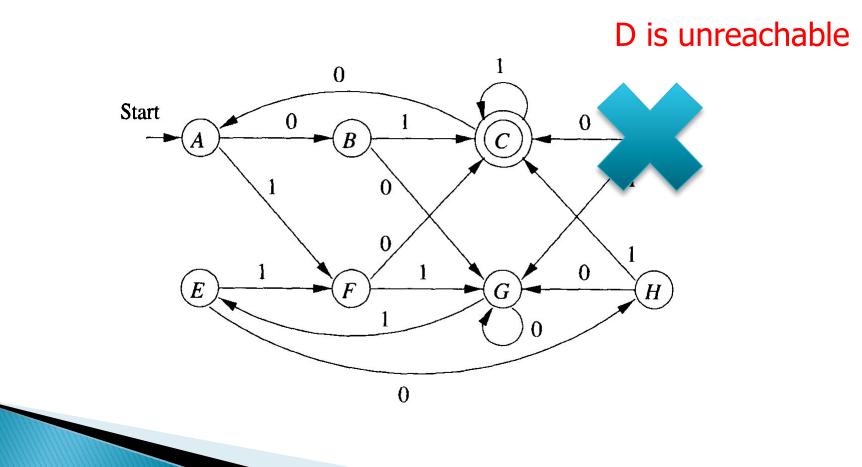
Table for determining distinguishable states



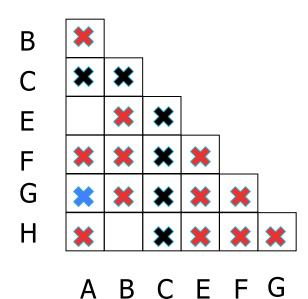
- Restatement of algorithm
 - First remove all states that are unreachable from the start state.
 - For all pairs {p,q} such that p is accepting and q is not, mark the equivalent cell in the table.
 - Consider each pair {p,q} not yet marked.
 - Determine $r = \delta^*$ (p,a) and $s = \delta^*$ (q,a) for each a in Σ .
 - If {r,s} is marked, then mark {p,q}
 - Repeat until no further cells are marked during an entire iteration of the algorithm

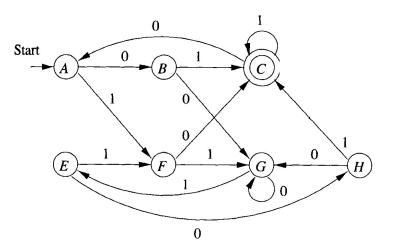
(one iteration considers all unmarked pairs of states)

Example



Let's try on our example

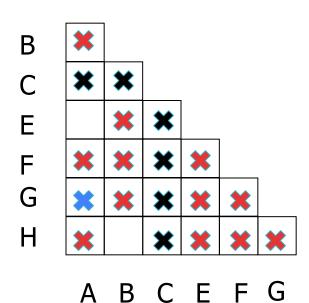




Once the table is complete

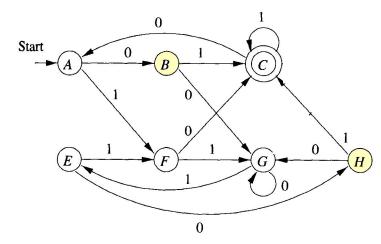
- All unmarked cells correspond to state pairs that are not distinguishable, i.e. they are equivalent
- Combine equivalent states into one
- Transitions from equivalent states should map to equivalent states

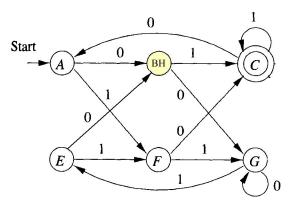
- A and E are equivalent
- B and H are equivalent



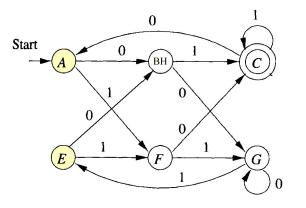
Start 0 B 1 C

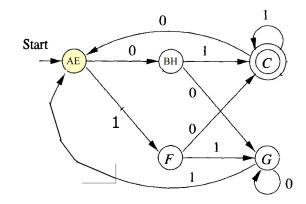
Combine H and B





Combine E and A





What have we done?

- Defined the notion of equivalent states
- Developed an algorithm to determine which states in a DFA are equivalent
- Combined equivalent states to create a DFA with minimal number of states.
- Given 2 specifications of regular languages, do the specifications describe the same language?
 - Create a minimal DFA for each language
 - Compare the minimal DFAs on a state by state basis.