

}  Today we continue looking at our first class
of languages: Regular languages
◦  Means of defining: Regular Expressions
◦  Machine for accepting: Finite Automata

}  Regular expressions (RE) and finite automata
are equivalent (with respect to the languages
they describe/accept)
1.  If R is a regular expression, there exists a DFA, M

such that L(R) = L(M).
2.  For any DFA, M, L(M), the language accepted by

the DFA can be described by a regular expression

}  Stephen Cole Kleene
◦  1909-1994
◦  Born in Hartford, Conn.

◦  PhD – Princeton (1934)
◦  Prof at U. of Wisconsin at

Madison (1935 – 1979)

◦  Introduced Kleene Star op
◦  Defined regular expressions
◦  Proved equivalence with DFA

}  Already completed:
◦  We already showed the equivalence of DFA and NFA

}  Left to do:
◦  Given an RE, find a DFA that accepts the language

described by the RE
�  Actually find an NFA
�  …Plus most of this is done!

◦  Given a DFA, find an RE that describes the language

accepted by the DFA

}  Since NFA are equivalent to DFA with respect
to the class of languages they accept
◦  We can, given an RE, build an NFA instead of a DFA

that accepts the language described by the RE
◦  We can always then convert that NFA to an

equivalent DFA (using the subset construction)

}  R is a regular expression if R equals
1.  ∅ (representing the empty language)
2.  ε (representing the language {ε})
3.  a, for each a ∈ Σ, (representing the language {a})

4.  (R1 ∪ R2) where R1 and R2 are regular

expressions
5.  (R1R2) where R1 and R2 are regular expressions
6.  (R1)* where R1 is a regular expression

Base
cases

Recursive
cases

}  We will prove by structural induction
◦  Similar to mathematical induction, except instead of

doing induction over integers, we will do induction
over the structure
�  We will still start with base cases – basic regular

expressions - and show that we can build NFA for them
�  And then we will do the inductive step.

�  Assume that given regular expressions R1 and R2 that
describe languages L1 and L2, there exist NFAs, M1 and M2
that accept L1 and L2

�  Then we prove that for larger expressions that we build
from R1 and R2 that we can still find an NFA that accepts the
same language

}  Base Cases: Build an NFA for regular
expressions: ∅, ε, and a, a ∈ Σ

a

∅ {ε} {a} Language described by the
regular expression

NFA recognizing the
language described by
the regular expression

}  Induction:
◦  Assume R1 and R2 are regular expressions that

describe languages L1 and L2. Then, by the
induction hypothesis, there exist NFA, M1 and M2,
that accept L1 and L2
◦  Then we must prove that we can create NFA that

accept the languages described by:
�  R1 + R2 (Union)
�  R1 R2 (Concatenation)
�  R1

* (Kleene Star)

}  Which we did already!

Union

Concatenation

Kleene Star

}  So that proves one direction.
◦  If we start with a regular expression, we know that

there exists an NFA that accepts the same language.
◦  And since NFA and DFA are equivalent, we could

build a DFA accepting the same language.

}  This shows that the class of languages that
DFA can represent is at least as large as the
class of languages that regular expressions
can represent

}  Convert (a ∪ b)*ab to an NFA

}  Given a DFA, M, there is a regular expression
R that describes the language accepted by M.

◦  We will construct the RE using a new type of FA, the

generalized nondeterministic finite automata
(GNFA).

◦  We will convert the DFA into an equivalent GNFA

◦  We will manipulate the GNFA until the final RE can

be read directly from the GNFA

}  Generalized Nondeterministic Finite Automata
(GNFA) are NFA whose edges are regular
expressions.

}  Special conditions:
◦  Start state has transitions to every other state but

has no transitions from other states.

◦  Only one final state…which is not the start state.

Has transitions from every other state but has no
transitions to other states.

◦  Each other state has a single transition to every

other state (including itself)

}  Convert the DFA to an equivalent GNFA
(which will have two extra states associated
with it)

}  Use algorithm designed for GNFA to reduce
the number of states in the GNFA one at a
time, until reaching just two states
◦  Must make sure that the reduced GNFA is equivalent at

each step
◦  The remaining states will be just the start state and the

final state
◦  The expression along the arrow from the start state to the

final start will be the regular expression

Given a 3-state DFA to start with:
Add extra start state

and final state

}  Add new start state, add ε-transition from
new start state to original start state.

}  Add new final state, add ε-transitions from

old final states (which are no longer final
states) to new final state.

}  For transitions with multiple labels, replace

with union of symbols

}  Add Ø transitions between all states where no

transitions originally existed.

}  Let’s convince ourselves that this hasn’t
changed the language (strings we accept) at
all
◦  Adding the new start state
�  One branch ε-transitions into the usual start state
�  The other branch stays in the new start state, but this

new start state is not an accepting state, and dies out
upon any symbol being read, so it won’t change the
strings that are accepted.

}  Let’s convince ourselves that this hasn’t
changed the language (strings we accept) at
all
◦  Adding the new final state
�  All of the old final states are no longer final states, and

have ε-transitions to the new final state
�  When an old final state is reached, it immediately

branches to the new final state. So any string that was
accepted previously will still be accepted.

�  The new branch at the new final state dies out upon
reading any symbol, however, so it won’t add any new
strings to the language

}  Let’s convince ourselves that this hasn’t
changed the language (strings we accept) at
all
◦  Transitions with multiple labels replaced with union

expression
�  The union expression allows transition along that

arrow for the same set of symbols

}  Let’s convince ourselves that this hasn’t
changed the language (strings we accept) at
all
◦  Adding arrows with Ø symbols
�  It is impossible to travel across an arrow with a Ø

symbol, so no new strings will be accepted.

Note that this figure skips putting in all of the Ø transitions

}  Once you have a GNFA,
◦  Repeatedly “rip” states, then “repair”
◦  Until you come up with a 2 state GNFA

}  On a 2 state GNFA, the RE will be on the only
transition (which will be from start to final
state)

}  Rip and repair
◦  Remove a state (Not the new start or finish!)
◦  Create new transitions to ensure that “repaired”

machine still accepts the same language.
�  The transition between any two remaining states will

be modified so that it accepts what it did originally,
plus any expression that corresponds to traveling
between the two states via the state being removed

}  Rip and repair

(R1)(R2)*(R3) ∪ (R4)

}  A note about Ø transitions…
◦  (R1)(R2)*(R3) ∪ (R4)

◦  If R4 = Ø
�  Then the new expression will just be the expression

corresponding to traveling through the state to be removed
◦  If R1 = Ø or If R3 = Ø
�  Concatenation with the empty set is the empty set, so no

new expression will be added to the combined path
◦  If R2 = Ø
�  Kleene star generates ε so it is still possible to augment with

direct path through qrip (R1R3)

}  Example 1.68

(a(aa∪b)*ab∪b)((ba∪a)(aa∪b)*ab∪bb)*((ba∪a)(aa∪b)*∪ε) ∪a(aa∪b)*

}  Given a DFA, M, there exists a regular
expression that describes the language L(M).

}  Let’s formally prove this.

}  Steps to an inductive proof:
1.  Basis step:

Show P(n) is true when n=n0
2.  Induction hypothesis

Assume that P(n) is true for some k ≥ n0
3.  Inductive step

Prove P(n) is true for n = k+1 using the induction
hypothesis.

We will inductively prove that the language
accepted by the GNFA is equivalent as we rip

states out

}  A GNFA G = (Q, Σ, δ, qstart, qaccept) where

◦  Q = set of states
◦  Σ = input alphabet
◦  δ = transition function (more on next slide)
◦  qstart = start state
◦  qaccept = final state

}  Definition of δ

◦  δ : (Q- qaccept) x (Q- qstart) ➞ R

◦  R = set of all regular expressions from alphabet Σ

}  Given a DFA, M = (Q1, Σ, δ1, q0, F), there exists
a regular expression that describes the
language L(M).

}  Step 1 – convert DFA to GNFA
◦  M = (Q1, Σ, δ1, q0, F)
◦  G = (Q, Σ, δ, qstart, qaccept)

�  Q = Q1 ∪ {qstart, qaccept}

}  Now for the transition function, δ
}  Recall:
◦  δ1: Q1 x Σ ➞ Q1
◦  δ: (Q- qaccept) x (Q- qstart) ➞ R

}  Regular transitions
◦  For q1, q2 ∈ Q1, let B = {a ∈ Σ | δ1 (q1, a) = q2 }
◦  Then δ (q1, q2) is the regular expression corresponding to

the union of ai ∈ B
�  If |B| = 0: δ (q1, q2) = Ø
�  If |B| = 1: δ (q1, q2) = a
�  If |B| > 1: δ (q1, q2) = a1 ∪ … ∪ an

}  Now for the transition function, δ
}  Recall:
◦  δ1: Q1 x Σ to Q1
◦  δ: (Q- qaccept) x (Q- qstart) to R

}  Start state transitions
◦  δ (qstart, q0) = ε
◦  For all q ∈ Q1, q ≠q0: δ (qstart, q) = Ø

}  Final state transitions
◦  For all q ∈ F, δ (q, qaccept) = ε
◦  For all q ∉ F, δ (q, qaccept) = Ø

}  CONVERT (G)
◦  returns a regular expression for GNFA G:

◦  k = number of states in G
◦  If k = 2 return δ (qstart, qaccept)
◦  Choose qrip ∈ Q, qrip ∉ {qstart, qaccept}
◦  Construct G’ = (Q’, Σ, δ’, qstart, qaccept) where
�  Q’ = Q – {qrip}
�  For states qi ∈ Q – {qaccept}, qj ∈ Q – {qstart}

�  δ’ (qi, qj) = (R1) (R2)* (R3) ∪ (R4)
�  Where
�  R1 = δ (qi, qrip), R2 = δ (qrip, qrip), R3 = δ (qrip, qj), R4

= δ (qi, qj)

»  Return CONVERT (G)=G'

}  To Prove:
}  For any GNFA G, L(G) = L(CONVERT(G))
◦  For any GNFA, the language accepted by the GNFA

is the same as the language accepted by the
machine after it has been reduced all the way down
to just a start and a final state

}  Induction on k = number of states of G

}  Will show true for all G with k ≥ 2

}  For any GNFA G, L(G) = L(CONVERT(G))

}  BASIS step
◦  For k = 2

◦  If k = 2, the only 2 states are start and accept.
◦  We don’t have to reduce it at all, so
�  L(G) = L(CONVERT(G)) trivially

}  For any GNFA G, L(G) = L(CONVERT(G))

}  INDUCTION HYPOTHESIS
◦  Assume true for n = k-1
◦  L(G) = L(CONVERT(G)) if G has k-1 states

}  INDUCTION
◦  Show true for n = k
◦  L(G) = L(CONVERT(G)) if G has k states.

}  For any GNFA G, L(G) = L(CONVERT(G))

}  Must show two things:
◦  If w is accepted by G, it is accepted by CONVERT(G)
◦  If w is accepted by CONVERT(G), it is accepted by G

}  For any GNFA G, L(G) = L(CONVERT(G))

}  Consider a single call of CONVERT
◦  Converting from G (k states) to G’ (k-1 states)

}  If w is accepted by G, then when running w on G

there is a sequence of states
◦  qstartq1q2...qaccept

}  If none of these are qrip then w is also accepted by
G’ by the same path

• For any GNFA G, L(G) = L(CONVERT(G)) (a single call
of CONVERT)
• If w is accepted by G, then when running w on G
there is a sequence of states qstartq1q2...qaccept
• If one or more of these are qrip

}  Isolate each occurrence of one or more
consecutive qrip states with qi and qj on either
side. Each of these runs has a new regular
expression in G’ from qi to qj representing
computation of G going from qi to qj but going
through qrip
}  (R1) (R2)* (R3) ∪ (R4)

}  For any GNFA G, L(G) = L(CONVERT(G))=L(G')

}  Consider a single call of CONVERT

}  If w is accepted by G’, then
◦  Any transition between qi and qj represents a

transition in G either going through qrip or not.
◦  G must also accept w.

}  So what have we done

}  For a single call of CONVERT,
◦  Given a GNFA with k states
◦  We constructed an equivalent GNFA with k-1 states.

}  Look at the final line of the function

}  CONVERT (G)
◦  returns a regular expression for GNFA G:

◦  k = number of states in G
◦  If k = 2 return δ (qstart, qaccept)
◦  Choose qrip ∈ Q, qrip ∉ {qstart, qaccept}
◦  Construct G’ = (Q’, Σ, δ’, qstart, qaccept) where
�  Q’ = Q – {qrip}
�  For states qi ∈ Q – {qstart}, qj ∈ Q – {qaccept}

�  δ’ (qi, qj) = (R1) (R2)* (R3) + (R4)
�  Where
�  R1 = δ (qi, qrip), R2 = δ (qrip, qrip) , R3 = δ (qrip, qj) ,

R4 = δ (qi, qj)

◦  Return CONVERT (G) = G'

}  So what have we done

}  For a single call of CONVERT,
◦  Given a GNFA with k states
◦  We constructed an equivalent GNFA with k-1 states.

}  Look at the final line of the function
◦  The returned GNFA has k-1 states
◦  By the inductive hypothesis, CONVERT will produce an

equivalent GNFA

}  We are done

}  Part 1
◦  Given a regular expression, R, we built an NFA that

accepts the language R describes
�  This shows that the class of languages that DFA can

represent is at least as large as the class of languages
that regular expressions can represent

}  Part 2
◦  Given a DFA, we constructed a regular expression

that describes the language accepted by the DFA
�  This shows that the class of languages described by

regular expressions is at least as large as the class of
languages that DFA can represent

}  The proof of Kleene Theorem is complete!

