


}  Today we continue looking at our first class 
of languages: Regular languages 
◦  Means of defining: Regular Expressions 
◦  Machine for accepting: Finite Automata 
 



}  Regular expressions (RE) and finite automata 
are equivalent (with respect to the languages 
they describe/accept) 
1.  If R is a regular expression, there exists a DFA, M 

such that L(R) = L(M). 
2.  For any DFA, M, L(M), the language accepted by 

the DFA can be described by a regular expression 
 

 



}  Stephen Cole Kleene 
◦  1909-1994 
◦  Born in Hartford, Conn. 
 
◦  PhD – Princeton (1934) 
◦  Prof at U. of Wisconsin at 

Madison (1935 – 1979) 
 
◦  Introduced Kleene Star op 
◦  Defined regular expressions 
◦  Proved equivalence with DFA 



}  Already completed: 
◦  We already showed the equivalence of DFA and NFA 
 

}  Left to do: 
◦  Given an RE, find a DFA that accepts the language 

described by the RE  
�  Actually find an NFA 
�  …Plus most of this is done! 
  
◦  Given a DFA, find an RE that describes the language 

accepted by the DFA 



}  Since NFA are equivalent to DFA with respect 
to the class of languages they accept 
◦  We can, given an RE, build an NFA instead of a DFA 

that accepts the language described by the RE 
◦  We can always then convert that NFA to an 

equivalent DFA (using the subset construction) 



}  R is a regular expression if R equals 
1.  ∅ (representing the empty language) 
2.  ε (representing the language {ε}) 
3.  a, for each a ∈ Σ, (representing the language {a}) 
 
4.  (R1 ∪ R2) where R1 and R2 are regular 

expressions 
5.  (R1R2) where R1 and R2 are regular expressions 
6.  (R1)* where R1 is a regular expression 
 
 

Base 
cases 

Recursive 
cases 



}  We will prove by structural induction 
◦  Similar to mathematical induction, except instead of 

doing induction over integers, we will do induction 
over the structure 
�  We will still start with base cases – basic regular 

expressions - and show that we can build NFA for them 
�  And then we will do the inductive step. 

�  Assume that given regular expressions R1 and R2 that 
describe languages L1 and L2, there exist NFAs, M1 and M2 
that accept L1 and L2 

�  Then we prove that for larger expressions that we build 
from R1 and R2 that we can still find an NFA that accepts the 
same language  

 



}  Base Cases:  Build an NFA for regular 
expressions:  ∅, ε, and a, a ∈ Σ

a 

∅ {ε} {a} Language described by the 
regular expression 

NFA recognizing the 
language described by 
the regular expression 



}  Induction: 
◦  Assume R1 and R2 are regular expressions that 

describe languages L1 and L2.  Then, by the 
induction hypothesis, there exist NFA, M1 and M2, 
that accept L1 and L2 
◦  Then we must prove that we can create NFA that 

accept the languages described by: 
�  R1 + R2  (Union) 
�  R1 R2 (Concatenation) 
�  R1

*  (Kleene Star) 



}  Which we did already! 

Union 

Concatenation 

Kleene Star 



}  So that proves one direction. 
◦  If we start with a regular expression, we know that 

there exists an NFA that accepts the same language. 
◦  And since NFA and DFA are equivalent, we could 

build a DFA accepting the same language. 
 

}  This shows that the class of languages that 
DFA can represent is at least as large as the 
class of languages that regular expressions 
can represent 
 



}  Convert (a ∪ b)*ab to an NFA 
 



}  Given a DFA, M, there is a regular expression 
R that describes the language accepted by M. 

 
◦  We will construct the RE using a new type of FA, the 

generalized nondeterministic finite automata 
(GNFA). 

 
◦  We will convert the DFA into an equivalent GNFA 
 
◦  We will manipulate the GNFA until the final RE can 

be read directly from the GNFA 



}  Generalized Nondeterministic Finite Automata 
(GNFA) are NFA whose edges are regular 
expressions. 

 
 



}  Special conditions: 
◦  Start state has transitions to every other state but 

has no transitions from other states. 
 
◦  Only one final state…which is not the start state. 

Has transitions from every other state but has no 
transitions to other states. 

 
◦  Each other state has a single transition to every 

other state (including itself) 



}  Convert the DFA to an equivalent GNFA 
(which will have two extra states associated 
with it) 

}  Use algorithm designed for GNFA to reduce 
the number of states in the GNFA one at a 
time, until reaching just two states 
◦  Must make sure that the reduced GNFA is equivalent at 

each step 
◦  The remaining states will be just the start state and the 

final state 
◦  The expression along the arrow from the start state to the 

final start will be the regular expression 



Given a 3-state DFA to start with: 
Add extra start state 

and final state 



}  Add new start state, add ε-transition from 
new start state to original start state. 

 
}  Add new final state, add ε-transitions from 

old final states (which are no longer final 
states) to new final state. 

 
}  For transitions with multiple labels, replace 

with union of symbols 
 
}  Add Ø transitions between all states where no 

transitions originally existed. 



}  Let’s convince ourselves that this hasn’t 
changed the language (strings we accept) at 
all 
◦  Adding the new start state 
�  One branch ε-transitions into the usual start state 
�  The other branch stays in the new start state, but this 

new start state is not an accepting state, and dies out 
upon any symbol being read, so it won’t change the 
strings that are accepted. 



}  Let’s convince ourselves that this hasn’t 
changed the language (strings we accept) at 
all 
◦  Adding the new final state 
�  All of the old final states are no longer final states, and 

have ε-transitions to the new final state 
�  When an old final state is reached, it immediately 

branches to the new final state.  So any string that was 
accepted previously will still be accepted. 

�  The new branch at the new final state dies out upon 
reading any symbol, however, so it won’t add any new 
strings to the language 



}  Let’s convince ourselves that this hasn’t 
changed the language (strings we accept) at 
all 
◦  Transitions with multiple labels replaced with union 

expression 
�  The union expression allows transition along that 

arrow for the same set of symbols 



}  Let’s convince ourselves that this hasn’t 
changed the language (strings we accept) at 
all 
◦  Adding arrows with Ø symbols 
�  It is impossible to travel across an arrow with a Ø 

symbol, so no new strings will be accepted. 



Note that this figure skips putting in all of the Ø transitions 



}  Once you have a GNFA,  
◦  Repeatedly “rip” states, then “repair” 
◦  Until you come up with a 2 state GNFA 
 

}  On a 2 state GNFA, the RE will be on the only 
transition (which will be from start to final 
state) 

 



}  Rip and repair 
◦  Remove a state (Not the new start or finish!) 
◦  Create new transitions to ensure that “repaired” 

machine still accepts the same language. 
�  The transition between any two remaining states will 

be modified so that it accepts what it did originally, 
plus any expression that corresponds to traveling 
between the two states via the state being removed   

 



}  Rip and repair 
 

(R1)(R2)*(R3) ∪ (R4) 



}  A note about Ø transitions… 
◦  (R1)(R2)*(R3) ∪ (R4) 
 
◦  If R4 = Ø 
�  Then the new expression will just be the expression 

corresponding to traveling through the state to be removed 
◦  If R1 = Ø or If R3 = Ø 
�  Concatenation with the empty set is the empty set, so no 

new expression will be added to the combined path 
◦  If R2 = Ø 
�  Kleene star generates ε so it is still possible to augment with 

direct path through qrip  (R1R3) 
 



}  Example 1.68 

(a(aa∪b)*ab∪b)((ba∪a)(aa∪b)*ab∪bb)*((ba∪a)(aa∪b)*∪ε) ∪a(aa∪b)* 



}  Given a DFA, M, there exists a regular 
expression that describes the language L(M). 

 
 
 
}  Let’s formally prove this. 



}  Steps to an inductive proof: 
1.  Basis step:  

Show P(n) is true when n=n0 
2.  Induction hypothesis 

Assume that P(n) is true for some k ≥  n0 
3.  Inductive step 

Prove P(n) is true for n = k+1 using the induction 
hypothesis. 

 

We will inductively prove that the language 
accepted by the GNFA is equivalent as we rip 

states out 



}  A GNFA G = (Q, Σ, δ, qstart, qaccept) where 
 
◦  Q = set of states 
◦  Σ = input alphabet 
◦  δ = transition function (more on next slide) 
◦  qstart = start state 
◦  qaccept = final state 



}  Definition of δ 
 
◦  δ : (Q- qaccept) x (Q- qstart)  ➞ R 
 
 
◦  R = set of all regular expressions from alphabet Σ  



}  Given a DFA, M = (Q1, Σ, δ1, q0, F), there exists 
a regular expression that describes the 
language L(M). 

 
}  Step 1 – convert DFA to GNFA 
◦  M = (Q1, Σ, δ1, q0, F)  
◦  G = (Q, Σ, δ, qstart, qaccept)  

 
�  Q = Q1 ∪ {qstart, qaccept} 

 
 



}  Now for the transition function, δ 
}  Recall: 
◦  δ1: Q1 x Σ ➞ Q1 
◦  δ: (Q- qaccept) x (Q- qstart) ➞ R 

 
}  Regular transitions 
◦  For q1, q2 ∈ Q1, let B = {a ∈ Σ | δ1 (q1, a) = q2 } 
◦  Then  δ (q1, q2 ) is the regular expression corresponding to 

the union of ai ∈ B 
�  If |B| = 0:  δ (q1, q2 ) = Ø 
�  If |B| = 1:  δ (q1, q2 ) = a 
�  If |B| > 1:  δ (q1, q2 ) = a1 ∪ … ∪ an 



}  Now for the transition function, δ 
}  Recall: 
◦  δ1: Q1 x Σ to Q1 
◦  δ: (Q- qaccept) x (Q- qstart) to R 
 

}  Start state transitions 
◦  δ (qstart, q0) = ε 
◦  For all q ∈ Q1, q ≠q0: δ (qstart, q) = Ø 

}  Final state transitions 
◦  For all q ∈ F, δ (q, qaccept) = ε 
◦  For all q ∉ F, δ (q, qaccept) = Ø 
 



}  CONVERT (G)  
◦  returns a regular expression for GNFA G: 
 
◦  k = number of states in G 
◦  If k = 2 return δ (qstart, qaccept) 
◦  Choose qrip ∈ Q, qrip ∉ {qstart, qaccept} 
◦  Construct G’ = (Q’, Σ, δ’, qstart, qaccept) where 
�  Q’ = Q – {qrip} 
�  For states qi ∈ Q – {qaccept},  qj ∈ Q – {qstart}  

�  δ’ (qi, qj) = (R1) (R2)* (R3) ∪ (R4) 
�  Where 
�  R1 = δ (qi, qrip), R2 = δ (qrip, qrip), R3 = δ (qrip, qj), R4 

= δ (qi, qj) 
 
»                           Return  CONVERT (G)=G' 

 



}  To Prove: 
}  For any GNFA G, L(G) = L(CONVERT(G)) 
◦  For any GNFA, the language accepted by the GNFA 

is the same as the language accepted by the 
machine after it has been reduced all the way down 
to just a start and a final state 

 
}  Induction on k = number of states of G 
 
}  Will show true for all G with k ≥ 2 



}  For any GNFA G, L(G) = L(CONVERT(G)) 
 
}  BASIS step 
◦  For k = 2 
 
◦  If k = 2, the only 2 states are start and accept. 
◦  We don’t have to reduce it at all, so  
�  L(G) = L(CONVERT(G)) trivially 



}  For any GNFA G, L(G) = L(CONVERT(G)) 
 
}  INDUCTION HYPOTHESIS 
◦  Assume true for n = k-1 
◦  L(G) = L(CONVERT(G)) if G has k-1 states 
 

}  INDUCTION 
◦  Show true for n = k 
◦  L(G) = L(CONVERT(G)) if G has k states. 
 

 
 



}  For any GNFA G, L(G) = L(CONVERT(G)) 
 
}  Must show two things: 
◦  If w is accepted by G, it is accepted by CONVERT(G) 
◦  If w is accepted by CONVERT(G), it is accepted by G 
 

 
 



}  For any GNFA G, L(G) = L(CONVERT(G)) 
 
}  Consider a single call of CONVERT 
◦  Converting from G (k states) to G’ (k-1 states)  

 
}  If w is accepted by G, then when running w on G 

there is a sequence of states 
◦  qstartq1q2...qaccept 
 

}  If none of these are qrip then w is also accepted by 
G’ by the same path 
 



• For any GNFA G, L(G) = L(CONVERT(G)) (a single call 
of CONVERT)  
• If w is accepted by G, then when running w on G 
there is a sequence of states qstartq1q2...qaccept 
• If one or more of these are qrip  

}  Isolate each occurrence of one or more 
consecutive qrip states with qi and qj on either 
side.  Each of these runs has a new regular 
expression in G’ from qi to qj representing 
computation of G going from qi to qj but going 
through qrip 
}  (R1) (R2)* (R3) ∪ (R4) 



}  For any GNFA G, L(G) = L(CONVERT(G))=L(G') 
 
}  Consider a single call of CONVERT  
 
}  If w is accepted by G’, then 
◦  Any transition between qi and qj represents a 

transition in G either going through qrip or not. 
◦  G must also accept w. 



}  So what have we done 
 
}  For a single call of CONVERT, 
◦  Given a GNFA with k states 
◦  We constructed an equivalent GNFA with k-1 states. 
 

}  Look at the final line of the function 



}  CONVERT (G)  
◦  returns a regular expression for GNFA G: 
 
◦  k = number of states in G 
◦  If k = 2 return δ (qstart, qaccept) 
◦  Choose qrip ∈ Q, qrip ∉ {qstart, qaccept} 
◦  Construct G’ = (Q’, Σ, δ’, qstart, qaccept) where 
�  Q’ = Q – {qrip} 
�  For states qi ∈ Q – {qstart},  qj ∈ Q – {qaccept}  

�  δ’ (qi, qj) = (R1) (R2)* (R3) + (R4) 
�  Where 
�  R1 = δ (qi, qrip), R2 = δ (qrip, qrip) , R3 = δ (qrip, qj) , 

R4 = δ (qi, qj) 
 

◦                                                  Return  CONVERT (G) = G' 
 



}  So what have we done 
 
}  For a single call of CONVERT, 
◦  Given a GNFA with k states 
◦  We constructed an equivalent GNFA with k-1 states. 
 

}  Look at the final line of the function 
◦  The returned GNFA has k-1 states 
◦  By the inductive hypothesis, CONVERT will produce an 

equivalent GNFA  
 

}  We are done 



}  Part 1 
◦  Given a regular expression, R, we built an NFA that 

accepts the language R describes 
�  This shows that the class of languages that DFA can 

represent is at least as large as the class of languages 
that regular expressions can represent 

 
}  Part 2 
◦  Given a DFA, we constructed a regular expression 

that describes the language accepted by the DFA 
�  This shows that the class of languages described by 

regular expressions is at least as large as the class of 
languages that DFA can represent 

 
 



}  The proof of Kleene Theorem is complete! 
 
 


