Based on slides of Aaron Deever

- Another means to describe languages accepted by Finite Automata.
- In some books, regular languages, <u>by</u> <u>definition</u>, are described using regular expressions.

(Sipser defines a regular language as one recognized by a finite automaton)

- A <u>regular expression</u> describes a language using only the set operations of:
 - Union
 - Concatenation
 - Kleene Star

- Regular expressions are the mechanism by which regular languages are described:
 - Take the "set operation" definition of the language and:
 - Replace {} with ()
 - (Some definitions also replace \cup with +)
 - And you have a regular expression
 - (We've used the "set operation" way of representing languages a bunch already)
 - In examples in class and in the homework, you were asked to start with simple languages like {0}, {1}, {ε} and Ø and build up more complicated languages using just those along with the regular operations of union, concatenation and Kleene star.

Language Set Notation

Regular Exp. Notation

{ɛ}	3	
{0}{1}{1}	011	
{0,1}	$0 \cup 1$	
{0, 01}	$0 \cup 01$	
${110}^{*}{0,1}$	(110)*(0∪1)	
$\{10, 11, 01\}^*$	$(10 \cup 11 \cup 01)^*$	
$\{0, 11\}^*(\{11\}^* \cup \{101, \epsilon\})$	$(0 \cup 11)^* ((11)^* \cup 101 \cup \epsilon)$	

Regular Expression Definition

• R is a regular expression if R equals

- 1. \emptyset (representing the empty language)
- cases 2. ϵ (representing the language { ϵ })
 - 3. a, for each $a \in \Sigma$, (representing the language {a})
 - 4. $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions

Recursive cases

Base

- 5. (R_1R_2) where R_1 and R_2 are regular expressions
 - 6. $(R_1)^*$ where R_1 is a regular expression

Some shorthand

- If we apply precedence to the operators, we can relax the full parenthesized definition:
 - Kleene star has highest precedence
 - Concatenation has middle precedence
 - Union has lowest precedence
- Thus
 - $a \cup b^*c$ is the same as $(a \cup ((b^*)c))$
 - (a \cup b)* is not the same as a \cup b*

- More shorthand
 - \circ Union over entire alphabet can be represented as Σ
 - Example: $\Sigma = \{a,b,c\}$

• (a
$$\cup$$
 b \cup c) = Σ

• (a
$$\cup$$
 b \cup c)* = Σ^*

More shorthand

Equating regular expressions.

- Two regular expressions are considered equal if they describe the same language
- 1^{*}1^{*} = 1^{*}
- $(a \cup b)^* \neq a \cup b^*$

For convenience

- $R^+ = RR^*$
- $\circ R^k = concatenation of R, k times$

- Note that:
 - A regular expression is <u>not</u> a language
 - A regular expression is used to <u>describe</u> a language.
 - It is incorrect to say that for a language L,
 - L = (a \cup b \cup c)*
 - But it's okay to say that L is described by
 - (a ∪ b ∪ c)*

Examples

- { w ∈ {0,1}* | w contains the substring 001 }
 (0 ∪ 1)*001(0 ∪ 1)* = Σ *001 Σ *
- { $w \in \{0,1\}^* | |w|$ is divisible by 2 or 3 }
 - ∘ ((0 ∪ 1)(0 ∪ 1))* ∪ ((0 ∪ 1)(0 ∪ 1)(0 ∪ 1))*
 - $((0 \cup 1)^2)^* \cup ((0 \cup 1)^3)^* = (\Sigma\Sigma)^* \cup (\Sigma\Sigma\Sigma)^*$
- ↓ { w ∈ {0,1}* | w does not contain two consecutive 0's}
 - $(0 \cup \epsilon)(1^+0)*1*$
- { w \in {0,1}* | |w| < 4 }
 - $\circ \ \varepsilon \ \cup \ 0 \ \cup \ 1 \ \cup \ (0 \ \cup \ 1)^2 \ \cup \ (0 \ \cup \ 1)^3 = \varepsilon \ \cup \ \Sigma \ \cup \ \Sigma^2 \ \cup \ \Sigma^3$

Examples

- All finite languages can be described by regular expressions
 - How?
 - A finite language is a finite set of strings
 - Each string is just a concatenation of symbols in the alphabet
 - Each symbol in the alphabet is a regular expression
 Concatenation is allowed in building up regular expressions
 - The language is the union of these strings
 - Example:
 - L = {a, aa, aba, aca}
 - $\mathbf{R} = \mathbf{a} \cup \mathbf{a}\mathbf{a} \cup \mathbf{a}\mathbf{b}\mathbf{a} \cup \mathbf{a}\mathbf{c}\mathbf{a}$

Examples

• For $\Sigma = \{0,1\}$, what language is described by the following:

• $\epsilon \cup 0 \cup 1 \cup (0 \cup 1)^* (00 \cup 10 \cup 11)$

• $L = \{x \in \{0,1\}^* \mid x \text{ does not end in } 01\}$

- If x does not end in 01, then either
 - |x| < 2 or
 - x ends in 00, 10, or 11

Useful Properties of Regular Expressions

- For regular expressions L, M and N
 - Commutative
 - $L \cup M = M \cup L$
 - Associative
 - (L \cup M) \cup N = L \cup (M \cup N)
 - (LM)N = L(MN)
 - Identities
 - $\varnothing \cup L = L \cup \varnothing = L$
 - $\epsilon L = L\epsilon = L$
 - $\varnothing L = L \varnothing = \varnothing$
 - Distributive
 - L (M \cup N) = LM \cup LN
 - $(M \cup N)L = ML \cup NL$
 - Idempotent
 - $L \cup L = L$

Useful Properties of Regular Expressions

- For regular expressions L, \emptyset , ϵ
 - $(L^*)^* = L^*$ • $\emptyset^* = \varepsilon$ • $\varepsilon^* = \varepsilon$ • $L^+ = LL^*$ • $L^* = L^+ \cup \varepsilon$

Applications using regular expressions

Program	(Original) Author	Version	Regex Engine
awk	Aho, Weinberger, Kernighan	generic	DFA
new <i>awk</i>	Brian Kernighan	generic	DFA
GNU awk	Arnold Robbins	recent	Mostly DFA, some NFA
MKS awk	Mortice Kern Systems		POSIX NFA
mawk	Mike Brennan	all	POSIX NFA
egrep	Alfred Aho	generic	DFA
MKS egrep	Mortice Kern Systems		POSIX NFA
GNU Emacs	Richard Stallman	all	Trad. NFA (POSIX NFA available)
Expect	Don Libes	all	Traditional NFA
expr	Dick Haight	generic	Traditional NFA
grep	Ken Thompson	generic	Traditional NFA
GNU grep	Mike Haertel	Version 2.0	Mostly DFA, but some NFA
GNU <i>find</i>	GNU		Traditional NFA
lex	Mike Lesk	generic	DFA
flex	Vern Paxson	all	DFA
lex	Mortice Kern Systems		POSIX NFA
more	Eric Schienbrood	generic	Traditional NFA
less	Mark Nudelman		Variable (usually Trad. NFA)
Perl	Larry Wall	all	Traditional NFA
Python	Guido van Rossum	all	Traditional NFA
sed	Lee McMahon	generic	Traditional NFA
Tcl	John Ousterhout	all	Traditional NFA
vi	Bill Joy	generic	Traditional NFA

Practical Uses for Regular Expressions

- Python
 - [] for union
 - * for Kleen star
 - **abc** for concatenation
 - Example
 - (a \cup b)*c($\epsilon \cup$ d \cup e)
 - [ab]*c[de]

Regular Expressions in Practice

- How can we implement in code an algorithm to take as input a regular expression and an arbitrary string, and output whether that string is an element of the language described by the regular expression?
 - Parse the regular expression to convert it into an expression tree
 - Build the NFA piece by piece from the expression tree
 - Convert the NFA to a DFA using subset construction
 - Remove unreachable states (if necessary) by depth-first search from starting state (later we'll discuss a minimization algorithm to remove redundant states)
 Rem the string through the DFA to see if accepted

Regular Expressions in Practice

- Regular expression engines have grown to encompass more than just DFA implementations
 - Traditional NFA investigate all possible branches in a particular order
 - Reduces space complexity (number of states needed)
 - But can exponentially increase time complexity in worst case
 - Returns first matching string, so doesn't necessarily find longest

Regular Expressions in Practice

- Regular expression engines have grown to encompass more than just DFA implementations
 - POSIX NFA are similar to traditional NFA
 - But they continue backtracking to try all branches
 - Guarantee finding longest matching string
 - Run even slower than traditional NFA

Next

- Regular expressions and finite automata are equivalent in their ability to describe languages.
 - Every regular expression has a FA that accepts the language it describes
 - The language accepted by a FA can be described by some regular expression.
- The Kleene Theorem! (1956)