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}  Another means to describe languages 
accepted by Finite Automata. 

 
}  In some books, regular languages, by 

definition, are described using regular 
expressions. 

(Sipser defines a regular language as one 
recognized by a finite automaton) 



}  A regular expression describes a language 
using only the set operations of: 
◦  Union 
◦  Concatenation 
◦  Kleene Star 



}  Regular expressions are the mechanism by which 
regular languages are described: 
◦  Take the “set operation” definition of the language and: 
�  Replace {} with () 
�  (Some definitions also replace ∪ with +) 
◦  And you have a regular expression 
 
◦  (We’ve used the “set operation” way of representing 

languages a bunch already) 
�  In examples in class and in the homework, you were 

asked to start with simple languages like {0}, {1}, {ε} and 
∅ and build up more complicated languages using just 
those along with the regular operations of union, 
concatenation and Kleene star. 



{ε} ε 
{0}{1}{1} 011 

{0,1} 0 ∪ 1 

{0, 01} 0 ∪ 01 

{110}*{0,1} (110)*(0∪1) 

{10, 11, 01}* (10 ∪ 11 ∪ 01)* 

{0, 11}*({11}* ∪ {101, ε}) (0 ∪ 11)*((11)* ∪ 101 ∪ ε) 

Language Set Notation Regular Exp. Notation 



}  R is a regular expression if R equals 
1.  ∅ (representing the empty language) 
2.  ε (representing the language {ε}) 
3.  a, for each a ∈ Σ, (representing the language {a}) 
 
4.  (R1 ∪ R2) where R1 and R2 are regular 

expressions 
5.  (R1R2) where R1 and R2 are regular expressions 
6.  (R1)* where R1 is a regular expression 
 
 

Base 
cases 

Recursive 
cases 



}  Some shorthand 
◦  If we apply precedence to the operators, we can 

relax the full parenthesized definition: 
�  Kleene star has highest precedence 
�  Concatenation has middle precedence 
�  Union has lowest precedence 
◦  Thus 
�  a ∪ b*c is the same as (a ∪ ((b*)c)) 
�  (a ∪ b)* is not the same as a ∪ b* 



}  More shorthand 
◦  Union over entire alphabet can be 

represented as Σ
◦  Example:  Σ = {a,b,c} 
�  (a ∪ b ∪ c) = Σ
�  (a ∪ b ∪ c)* = Σ* 
 
 



}  More shorthand 
◦  Equating regular expressions.  
�  Two regular expressions are considered equal if they 

describe the same language 
�  1*1* = 1* 

�  (a ∪ b)* ≠ a ∪ b* 
 

}  For convenience 
◦  R+ = RR* 
◦  Rk = concatenation of R, k times 

 
 
 



}  Note that: 
◦  A regular expression is not a language 
◦  A regular expression is used to describe a 

language. 
 
◦  It is incorrect to say that for a language L, 
�  L = (a ∪ b ∪ c)* 

◦  But it’s okay to say that L is described by 
�  (a ∪ b ∪ c)* 



}  { w ∈ {0,1}* | w contains the substring 001 } 
◦  (0 ∪ 1)*001(0 ∪ 1)* = Σ*001Σ* 

}  { w ∈ {0,1}* | |w| is divisible by 2 or 3 } 
◦  ((0 ∪ 1)(0 ∪ 1))* ∪ ((0 ∪ 1)(0 ∪ 1)(0 ∪ 1))*  
◦  ((0 ∪ 1)2)* ∪ ((0 ∪ 1)3)* = (ΣΣ)* ∪ (ΣΣΣ)* 

}  { w ∈ {0,1}* | w does not contain two 
consecutive 0’s} 
◦  (0 ∪ ε)(1+0)*1* 

}  { w ∈ {0,1}* | |w| < 4 } 
◦  ε ∪ 0 ∪ 1 ∪ (0 ∪ 1)2 ∪ (0 ∪ 1)3 = ε ∪ Σ ∪ Σ2 ∪ Σ3  



}  All finite languages can be described by 
regular expressions 
◦  How? 
◦  A finite language is a finite set of strings 
�  Each string is just a concatenation of symbols in the 

alphabet 
�  Each symbol in the alphabet is a regular expression 

Concatenation is allowed in building up regular expressions 
�   The language is the union of these strings 
◦  Example: 
�  L = {a, aa, aba, aca} 
�  R = a ∪ aa ∪ aba ∪ aca 

 



}  For Σ = {0,1}, what language is described by 
the following: 

 
◦  ε ∪ 0 ∪ 1 ∪ (0 ∪ 1)*(00 ∪ 10 ∪ 11) 

 
}  L = {x ∈ {0,1}* | x does not end in 01} 
◦  If x does not end in 01, then either  
�  |x| < 2 or 
�  x ends in 00, 10, or 11 



}  For regular expressions L, M and N 
◦  Commutative 

�  L ∪ M = M ∪ L 
◦  Associative 

�  (L ∪ M) ∪ N = L ∪ (M ∪ N) 
�  (LM)N = L(MN) 

◦  Identities 
�  ∅ ∪ L = L ∪ ∅ = L 
�  εL = Lε = L 
�  ∅L = L∅ = ∅

◦  Distributive 
�  L (M ∪ N) = LM ∪ LN 
�  (M ∪ N)L = ML ∪ NL 

◦  Idempotent 
�  L ∪ L = L 



}  For regular expressions L, ∅, ε 
}    
◦  (L*)* = L* 

◦ ∅* = ε 
◦  ε* = ε 
◦ L+ = LL* 

◦ L* = L+ ∪ ε 
 

 



Applications using 
regular expressions 



}  Python 
◦  [ ] for union 
◦  * for Kleen star 
◦  abc for concatenation 
◦  Example 
�  (a ∪ b)*c(ε ∪ d ∪ e) 
�  [ab]*c[de] 
 



}  How can we implement in code an algorithm to 
take as input a regular expression and an arbitrary 
string, and output whether that string is an element 
of the language described by the regular 
expression? 
 
◦  Parse the regular expression to convert it into an 

expression tree 
◦  Build the NFA piece by piece from the expression tree 
◦  Convert the NFA to a DFA using subset construction 
◦  Remove unreachable states (if necessary) by depth-first 

search from starting state (later we’ll discuss a 
minimization algorithm to remove redundant states) 
◦  Run the string through the DFA to see if accepted 



}  Regular expression engines have grown to 
encompass more than just DFA 
implementations 
◦  Traditional NFA investigate all possible branches 

in a particular order 
�  Reduces space complexity (number of states needed) 
�  But can exponentially increase time complexity in worst 

case 
�  Returns first matching string, so doesn’t necessarily find 

longest 
 



}  Regular expression engines have grown to 
encompass more than just DFA 
implementations 
◦  POSIX NFA are similar to traditional NFA 
�  But they continue backtracking to try all branches 
�  Guarantee finding longest matching string 
�  Run even slower than traditional NFA 



}  Regular expressions and finite automata are 
equivalent in their ability to describe 
languages. 
◦  Every regular expression has a FA that accepts 

the language it describes 
◦  The language accepted by a FA can be described 

by some regular expression. 
}  The Kleene Theorem! (1956) 


