Regular Expressions

Based on slides of Aaron Deever

Regular Expressions

» Another means to describe languages
accepted by Finite Automata.

» In some books, regular languages, by
definition, are described using regular

expressions.

(Sipser defines a regular language as one
recognized by a finite automaton)

Regular Expressions

» A reqular expression describes a language

using only the set operations of:
> Union

- Concatenation

- Kleene Star

Regular Expressions

» Regular expressions are the mechanism by which
regular languages are described:
- Take the “set operation” definition of the language and:
- Replace {} with ()
- (Some definitions also replace U with +)
> And you have a regular expression

- (We've used the “set operation” way of representing
languages a bunch already)

- In examples in class and in the homework, you were
asked to start with simple languages like {0}, {1}, {€} and
@ and build up more complicated languages using just
those along with the regular operations of union,

B_concatenation and Kleene star.

Regular Expressions

Language Set Notation

Regular Exp. Notation

{e} 3

{0}{1}{1} 011

{0,1} OuUl

{0, 01} 0 U 01

£110}*{0,1} (110)*(0U1)

{10, 11, 01}" (10 U 11 U 01)°
{O 11} ({11} U {101, €}) [(0 U 11)*((11)* U 101 U €)

Regular Expression Definition

» Ris aregular expression if R equals
e |- D (representing the empty language)
cases 2. € (representing the language {¢c})
3. a, for each a € =, (representing the language {a})

4. (R, UR,) where R, and R, are regular
expressions
Recursive

ases 5. (R{R,) where R, and R, are regular expressions
6. (R;)* where R, is a regular expression

Regular Expressions

» Some shorthand

- If we apply precedence to the operators, we can
relax the full parenthesized definition:

- Kleene star has highest precedence
- Concatenation has middle precedence
- Union has lowest precedence

> Thus

- aUDb’cis the same as (a U ((b")c))
- (AU b)"is not the same as a U b”

Regular Expressions

» More shorthand

- Union over entire alphabet can be
represented as X

- Example: = = {a,b,c}
-(@UbuUco ==X
-(@UbUQ*=2x*

Regular Expressions

» More shorthand

- Equating regular expressions.

- Two regular expressions are considered equal if they
describe the same language

-(@Ub)y'=aUb’

» For convenience
- R+ = RR*
- Rk = concatenation of R, k times

Regular Expressions

» Note that:

> A regular expression is not a language

> A regular expression is used to describe a
language.

> |t is incorrect to say that for a language L,
-L=@UDbU 0o

- But it’s okay to say that L is described by
-(@UbUco)

Examples

»{w € {0,1}* | w contains the substring 001 }
- (0u 1)*00TMO0O U 1)* = Z*001x*

»{w € {0,1} | |w| is divisible by 2 or 3 }
c(OUTHOUI)*UOUTHOUTHOUI)*
> (0 U 12)* U (0 U 1)3)* = (I2)* U (ZZ3)*

»{w € {0,1}* | w does not contain two
consecutive Q’s}
- (0 U e)(1*t0)*1*

y{we{0,1} | |lw| <4}
ceUOQUTUMOUITUMOUIE=eUZU2US3

Examples

» All finite languages can be described by
regular expressions
- How?
- A finite language is a finite set of strings
- Each string is just a concatenation of symbols in the

alphabet
- Each symbol in the alphabet is a regular expression
Concatenation is allowed in building up regular expressions
The language is the union of these strings
- Example:
- L = {a, aa, aba, aca}
- R=aUaauUabauU aca

Examples

» For = = {0,1}, what language is described by
the following:

ceJOUTUMOUT)(O0UIT0UTI)

»L={x€{0,1} | x does not end in 01}
- If x does not end in 01, then either
- |x| < 2 or
- x ends in 00, 10, or 11

Useful Properties of Regular
Expressions

» For regular expressions L, M and N
- Commutative

-LUM=MUL

Associative

- (LUM)UN=LU(MUN)

- (LM)N = L(MN)

|ldentities

- JguUuL=LUZ =L

- eL=Le=1L

- gL=1g =

Distributive

- L(MUN) =LMULN

- (MUN)L =MLUNL

Idempotent

_ - LulL=L

o

(o]

o

(o]

Useful Properties of Regular
Expressions

» For regular expressions L, I, €
4

(L)Y =L

o J = ¢

o g = ¢

o L+ = LL~

oL =L*U ¢

p—

Applications using
regular expressions

Program |(Original) Author

I Version IRegex Engine

Iawk ‘Aho, Weinberger, Kemighanl generic IDFA

’new awk ’Brian Kemighan

’ generic ’DFA

GNU awk | Amold Robbins

IMKS awk ’Mortice Kern Systems

I recent ’Mostly DF4, some NFA

POSIX NFA

Imawﬁc ‘Mike Brennan

| all POSIXNFA

’egrep ’Alﬁ’e d Aho

IMKS egrep ’Mortice Kem Systems

’ generic ’DFA

POSIX NFA

IGN U Emacs ’Richard Stallman

all |Trad. NFA (POSIX NFA available)

IExpect ‘Don Libes

all |Traditional NFA

’expr ’Dick Haight

Igrep ’Ken Thompson

generic ’Traditional NF&

IGNU grep ’Mike Haertel

|
’ generic ’Traditional NF&
|
|

Version 2.0 IMostly DF4, but some NF&

IGNU find ‘GNU ITraditional NF&
’fex ’Mike Lesk ’ generic ’DFA
lﬂex ’Vem Paxson I all ’DFA
I.Eex ’Mortice Kern Systems IPOSIX NF&
Imore ‘Eric Schienbrood I generic ITraditional NF&
’Jess ’Mark Nudelman ’Van'able {(usually Trad. NF&)
Perl Larry Wall | all |Traditional NFA
IPython ’Guido van Rossum I all ITraditional NF&
Ised ‘Lee MclMahon I generic ITraditional NF&
’Tcl ’I ohn Ousterhout ’ all ’Traditional NF&
|

Ivi ’Bill Joy

generic ’Traditional NF&

Practical Uses for Regular
Expressions

» Python
> [] for union
- * for Kleen star
- abc for concatenation
> Example
- (aU b)*c(e U d U e)
- [ab]*c[de]

p—

Regular Expressions in Practice

» How can we implement in code an algorithm to
take as input a regular expression and an arbitrary
string, and output whether that string is an element
of the language described by the regular
expression?

> Parse the regular expression to convert it into an
expression tree

- Build the NFA piece by piece from the expression tree

- Convert the NFA to a DFA using subset construction

- Remove unreachable states (if necessary) by depth-first

search from starting state (later we’ll discuss a
___ minimization algorithm to remove redundant states)

Regular Expressions in Practice

» Regular expression engines have grown to
encompass more than just DFA

implementations

> Traditional NFA investigate all possible branches
in a particular order
- Reduces space complexity (number of states needed)

- But can exponentially increase time complexity in worst
case

- Returns first matching string, so doesn’t necessarily find
longest

Regular Expressions in Practice

» Regular expression engines have grown to
encompass more than just DFA
implementations

> POSIX NFA are similar to traditional NFA
- But they continue backtracking to try all branches
- Guarantee finding longest matching string
- Run even slower than traditional NFA

Next

» Regular expressions and finite automata are
equivalent in their ability to describe
languages.

- Every regular expression has a FA that accepts
the language it describes

- The language accepted by a FA can be described
by some regular expression.

» The Kleene Theorem! (1956)

