
 Based on slides of Aaron Deever

}  Another means to describe languages
accepted by Finite Automata.

}  In some books, regular languages, by

definition, are described using regular
expressions.

(Sipser defines a regular language as one
recognized by a finite automaton)

}  A regular expression describes a language
using only the set operations of:
◦  Union
◦  Concatenation
◦  Kleene Star

}  Regular expressions are the mechanism by which
regular languages are described:
◦  Take the “set operation” definition of the language and:
�  Replace {} with ()
�  (Some definitions also replace ∪ with +)
◦  And you have a regular expression

◦  (We’ve used the “set operation” way of representing

languages a bunch already)
�  In examples in class and in the homework, you were

asked to start with simple languages like {0}, {1}, {ε} and
∅ and build up more complicated languages using just
those along with the regular operations of union,
concatenation and Kleene star.

{ε} ε
{0}{1}{1} 011

{0,1} 0 ∪ 1

{0, 01} 0 ∪ 01

{110}*{0,1} (110)*(0∪1)

{10, 11, 01}* (10 ∪ 11 ∪ 01)*

{0, 11}*({11}* ∪ {101, ε}) (0 ∪ 11)*((11)* ∪ 101 ∪ ε)

Language Set Notation Regular Exp. Notation

}  R is a regular expression if R equals
1.  ∅ (representing the empty language)
2.  ε (representing the language {ε})
3.  a, for each a ∈ Σ, (representing the language {a})

4.  (R1 ∪ R2) where R1 and R2 are regular

expressions
5.  (R1R2) where R1 and R2 are regular expressions
6.  (R1)* where R1 is a regular expression

Base
cases

Recursive
cases

}  Some shorthand
◦  If we apply precedence to the operators, we can

relax the full parenthesized definition:
�  Kleene star has highest precedence
�  Concatenation has middle precedence
�  Union has lowest precedence
◦  Thus
�  a ∪ b*c is the same as (a ∪ ((b*)c))
�  (a ∪ b)* is not the same as a ∪ b*

}  More shorthand
◦  Union over entire alphabet can be

represented as Σ
◦  Example: Σ = {a,b,c}
�  (a ∪ b ∪ c) = Σ
�  (a ∪ b ∪ c)* = Σ*

}  More shorthand
◦  Equating regular expressions.
�  Two regular expressions are considered equal if they

describe the same language
�  1*1* = 1*

�  (a ∪ b)* ≠ a ∪ b*

}  For convenience
◦  R+ = RR*
◦  Rk = concatenation of R, k times

}  Note that:
◦  A regular expression is not a language
◦  A regular expression is used to describe a

language.

◦  It is incorrect to say that for a language L,
�  L = (a ∪ b ∪ c)*

◦  But it’s okay to say that L is described by
�  (a ∪ b ∪ c)*

}  { w ∈ {0,1}* | w contains the substring 001 }
◦  (0 ∪ 1)*001(0 ∪ 1)* = Σ*001Σ*

}  { w ∈ {0,1}* | |w| is divisible by 2 or 3 }
◦  ((0 ∪ 1)(0 ∪ 1))* ∪ ((0 ∪ 1)(0 ∪ 1)(0 ∪ 1))*
◦  ((0 ∪ 1)2)* ∪ ((0 ∪ 1)3)* = (ΣΣ)* ∪ (ΣΣΣ)*

}  { w ∈ {0,1}* | w does not contain two
consecutive 0’s}
◦  (0 ∪ ε)(1+0)*1*

}  { w ∈ {0,1}* | |w| < 4 }
◦  ε ∪ 0 ∪ 1 ∪ (0 ∪ 1)2 ∪ (0 ∪ 1)3 = ε ∪ Σ ∪ Σ2 ∪ Σ3

}  All finite languages can be described by
regular expressions
◦  How?
◦  A finite language is a finite set of strings
�  Each string is just a concatenation of symbols in the

alphabet
�  Each symbol in the alphabet is a regular expression

Concatenation is allowed in building up regular expressions
�  The language is the union of these strings
◦  Example:
�  L = {a, aa, aba, aca}
�  R = a ∪ aa ∪ aba ∪ aca

}  For Σ = {0,1}, what language is described by
the following:

◦  ε ∪ 0 ∪ 1 ∪ (0 ∪ 1)*(00 ∪ 10 ∪ 11)

}  L = {x ∈ {0,1}* | x does not end in 01}
◦  If x does not end in 01, then either
�  |x| < 2 or
�  x ends in 00, 10, or 11

}  For regular expressions L, M and N
◦  Commutative

�  L ∪ M = M ∪ L
◦  Associative

�  (L ∪ M) ∪ N = L ∪ (M ∪ N)
�  (LM)N = L(MN)

◦  Identities
�  ∅ ∪ L = L ∪ ∅ = L
�  εL = Lε = L
�  ∅L = L∅ = ∅

◦  Distributive
�  L (M ∪ N) = LM ∪ LN
�  (M ∪ N)L = ML ∪ NL

◦  Idempotent
�  L ∪ L = L

}  For regular expressions L, ∅, ε
} 
◦  (L*)* = L*

◦ ∅* = ε
◦  ε* = ε
◦ L+ = LL*

◦ L* = L+ ∪ ε

Applications using
regular expressions

}  Python
◦  [] for union
◦  * for Kleen star
◦  abc for concatenation
◦  Example
�  (a ∪ b)*c(ε ∪ d ∪ e)
�  [ab]*c[de]

}  How can we implement in code an algorithm to
take as input a regular expression and an arbitrary
string, and output whether that string is an element
of the language described by the regular
expression?

◦  Parse the regular expression to convert it into an

expression tree
◦  Build the NFA piece by piece from the expression tree
◦  Convert the NFA to a DFA using subset construction
◦  Remove unreachable states (if necessary) by depth-first

search from starting state (later we’ll discuss a
minimization algorithm to remove redundant states)
◦  Run the string through the DFA to see if accepted

}  Regular expression engines have grown to
encompass more than just DFA
implementations
◦  Traditional NFA investigate all possible branches

in a particular order
�  Reduces space complexity (number of states needed)
�  But can exponentially increase time complexity in worst

case
�  Returns first matching string, so doesn’t necessarily find

longest

}  Regular expression engines have grown to
encompass more than just DFA
implementations
◦  POSIX NFA are similar to traditional NFA
�  But they continue backtracking to try all branches
�  Guarantee finding longest matching string
�  Run even slower than traditional NFA

}  Regular expressions and finite automata are
equivalent in their ability to describe
languages.
◦  Every regular expression has a FA that accepts

the language it describes
◦  The language accepted by a FA can be described

by some regular expression.
}  The Kleene Theorem! (1956)

