


}  Some important operations over regular 
languages: 
◦  Union:   
�  A ∪ B = { w | w ∈ A or w ∈ B } 
◦  Concatenation: 
�  AB = { wx | w ∈ A and x ∈ B } 
◦  Kleene Star 
A* = Ai = A0∪A1

i=0

∞

 ∪A2∪A3∪A4...



}  Regular Languages are closed under each of 
these operations: 
◦  Union 
�  If A is regular and B is regular then A ∪ B is regular. 
◦  Concatenation 
�  If A is regular and B is regular then AB is regular. 
◦  Kleene Star 
�  If A is regular, then A* is regular. 

◦  We already showed for union. 
�  Constructive Proof 

�  We’ll do the other 2 as well as union again using NFAs 



}  For every DFA, there is an NFA that accepts 
the same language 

}  For every NFA, there is a DFA that accepts 
the same language 

 

}  DFAs, NFAs, are equivalent! 



}  The class of regular languages is closed 
under concatenation: 
◦  Need to show:  If A1 and A2 are regular languages, 

then A1A2 is regular 
◦  Since A1 and A2 are regular, we know there are 

NFAs, N1 and N2 such that A1 = L(N1) and A2 = L(N2)  

◦  We will build an NFA, N that will accept A1A2 

◦  Since NFAs and DFAs are equivalent: 
�  If we build an NFA that accepts, there is a DFA that 

accepts 
�  Thus the concatenation language is regular. 

Finally – we put NFAs to use! 



}  Let 
◦  N1 = (Q1, Σ, δ1, q1, F1) 
◦  N2 = (Q2, Σ, δ2, q2, F2) 

}  We will build 
◦  N = (Q, Σ, δ, q0, F) 

}  Such that 
◦  L(N) = L(N1) L(N2) = A1A2  



}  Basic idea 
◦  Build N to start at the start state of N1 and from any 

accepting state of N1 move directly to the start state 
of N2 via an ε-transition. 

… … 

NFA for A1 

NFA for A2 

ε 

What about the accepting states? 

ε 
ε 



}  Basic idea 
◦  Build N to start at the start state of N1 and from any 

accepting state of N1 move directly to the start state 
of N2 via an ε-transition.  (And stay where you are 
in the first machine!) 

◦  After a first portion of the string is accepted by the 
1st machine, an extra branch is created to test the 
remainder of the string on the 2nd machine 

�  The set of final states for the new machine consists of 
final states from the second machine 



}  Let’s formalize this: 
◦  N1 = (Q1, Σ, δ1, q1, F1) 
◦  N2 = (Q2, Σ, δ2, q2, F2) 

◦  N = (Q, Σ, δ, q0, F) 
�  Q = Q1 ∪ Q2 
�  q0 = q1 
�  F = F2 



}  Let’s formalize this: 
◦  Transition function δ : 

�  δ(q, a) = δ1(q, a)   for q ∈ Q1 - F1, a ∈ Σε  

�  δ(q, a) = δ1(q, a)   for q ∈ F1 and a ∈ Σ 

�  δ(q, ε) = δ1(q, ε) ∪ {q2}   for q ∈ F1 

�  δ(q, a) = δ2(q, a)   for q ∈ Q2, a ∈ Σε  

If we are in an accept state for N1 we 
define there to be an ε-transition to 
the start state of N2 in addition to 
wherever N1 ε-transitions anyway.   



•  Group the machines 
together 

•  Add ε–transitions from 
final states of N1 to the 
start state of N2 

•  Make the final states of 
N2 be the only final 
states of N 



}  Let 
◦  N1 = (Q1, Σ, δ1, q1, F1) 

}  We will build 
◦  N = (Q, Σ, δ, q0, F) 

}  Such that 
◦  L(N) = (L(N1))* 



}  Basic idea 
◦  Create a new accepting start state 

◦  Go from new start state to original start state 
via an ε-transition 
 
◦  Create ε-transitions from all final states back 

to original start state (to allow for repetition) 



Why do we we need a new start state? 
Because we need to accomplish two things 
1. Make sure the empty string is accepted 
2. ε-transition to the start after each final state is reached 
But if we choose to make the original start state accepting, we might 
inadvertently allow other strings to be accepted that we don’t want 
(if/when the machine naturally transitions back to its starting state) 



}  Let’s formalize this: 
◦  N1 = (Q1, Σ, δ1, q1, F1) 

◦  N = (Q, Σ, δ, q0, F) 
�  Q = Q1 ∪ {qnewstart} 
�  q0 = qnewstart 
�  F = F1 ∪ {qnewstart} 



}  Let’s formalize this: 
◦  Transition function δ : 

�  δ(q, a) = δ1(q, a)   for q ∈ Q1 - F1, a ∈ Σε  
�  δ(q, a) = δ1(q, a)   for q ∈ F1 and a ∈ Σ 

�  δ(q, ε) = δ1(q, ε) ∪ {q1}   for q ∈ F1 

�  δ(qnewstart, ε) = {q1} 
�  δ(qnewstart, a) = Ø       for a ∈ Σ 

These two just define the behavior 
for the new start state.   

Just like for concatenation, we 
define there to be an ε-transition 
to the start state of N1 in addition 
to wherever N1 ε-transitions 
anyway.   



}  Let 
◦  N1 = (Q1, Σ, δ1, q1, F1) 
◦  N2 = (Q2, Σ, δ2, q2, F2) 

}  We will build 
◦  N = (Q, Σ, δ, q0, F) 

}  Such that 
◦  L(N) = L(N1) ∪ L(N2)  



}  Basic idea 
◦  Using ε-transitions, create a “branch” where the 

machine can either follow one branch (representing 
N1) or the other branch (representing N2) 

Start state of N1 

Start state of N2 

ε 

ε 
Start state of N 



}  Let’s formalize this: 
◦  N1 = (Q1, Σ, δ1, q1, F1) 
◦  N2 = (Q2, Σ, δ2, q2, F2) 

◦  N = (Q, Σ, δ, q0, F) 
�  Q = Q1 ∪ Q2 ∪ {qnewstart} 
�  q0 = qnewstart 

�  F = F1 ∪ F2 



}  Let’s formalize this: 
◦  Transition function δ : 

�  δ(q, a) = δ1(q, a)   for q ∈ Q1, a ∈ Σε  
�  δ(q, a) = δ2(q, a)   for q ∈ Q2, a ∈ Σε  

�  δ(qnewstart, ε) = {q1,q2} 
�  δ(qnewstart, a) = Ø       for a ∈ Σ 

The behavior of the 
states in the 
original machines 
stays the same.   

This is the only 
change.  These 
two just define the 
behavior for the 
new start state.   





}  Let’s try an example 

◦  Start with the languages {0} and {1} 

◦  Create an NFA for the language: 
�  ({0}{0} ∪ {1})* 



}  First, build the language {0}{0} 
◦  This is the language formed by concatenating the 

language {0} with itself 
◦  NFA for the language {0} 

◦  NFA for concatenation 

0 

0 0 ε 



}  Next, take the union of {0}{0} and {1} 
◦  ({0}{0} ∪ {1}) 

1 ε 

ε 0 0 ε 



}  Finally, take the Kleene star operation 
◦  ({0}{0} ∪ {1})* 

1 ε 

ε 0 0 ε 

ε 

ε 

ε 



}  Constructive proof of the closure of regular 
languages under: 
◦  Union 
◦  Concatenation  
◦  Kleene Star 

 


