Equivalence of DFAs and NFAs

Equivalence

- What does it mean for two automata to be equivalent?
 - Two finite automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$.
 - If they accept the same language.
- NFA and DFA are equivalent if every language that can be accepted by an NFA can also be accepted by a DFA and vice versa

DFA / NFA Equivalence

- How we will show this:
 - 1. Given a DFA that accepts arbitrary language L_1 , create an NFA that also accepts L_1
 - 2. Given an NFA that accepts arbitrary language L_2 , create a DFA that also accepts L_2
- By proving 1, we show that the class of languages that DFAs represent is a subset of the class of languages that NFAs represent
- By proving 2, we show that the class of languages that NFAs represent is a subset of the class of languages that DFAs represent
- Put them together, and that shows that DFAs and NFAs represent the same class of languages!

Step 1: Given DFA find NFA

- Observe that a DFA can easily be converted to an equivalent NFA:
 - DFAs all transitions lead to exactly one state
 - Define the transitions of the NFA to consist of sets of only 1 element. All ϵ -transitions are to \emptyset .
 - (When we think of state diagrams, the DFA state diagram is already an NFA state diagram)
 - (Formally, however, we have to complete the definition of the NFA by tweaking the transition function so that the output are sets, and the function is fully defined for all inputs (including ϵ -transitions).

Step 2: Given NFA find DFA

- Given NFA find equivalent DFA
 - Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA:
 - We need to show that there exists a DFA
 - $M = (Q', \Sigma, \delta', q_0', F')$
 - Such that L(N) = L(M)
 - For now we'll assume that N has no ϵ -transitions.

- Basic idea
 - Recall that for an NFA, δ : Q x $\Sigma \epsilon \rightarrow P(Q)$
 - In other words, the transition function moves from one state to some set of states (0 or more).
 - P(Q) is the power set of Q the set of all possible subsets of Q. The set of states we move to is some member of this power set.

- Recall: we used the Cartesian product to track two machines simultaneously and build a machine that represents the union of two machines
 - We use a similar idea here to represent what the NFA is doing
 - Except the set of states for our new machine is not the set of all possible ordered pairs (as in Cartesian product)
 - Instead it's the set of all possible subsets of Q (i.e. the power set P(Q)). At every step, we'll be in some collection of states (some element of P(Q)), we'll read a symbol, and we'll move to some other set of states (some element of P(Q))

- The same idea said slightly differently
 - Since the NFA can be in a set of states at any point, construct the DFA so that its states correspond to all the possible sets of states that the NFA could be in.
 - For Cartesian product, if we had two machines with $|Q_1|$ and $|Q_2|$ states, the union machine had
 - $|Q_1| * |Q_2|$ states
 - If the NFA has |Q| states, how many will the constructed DFA have?
 - $|P(Q)| = 2^{|Q|}$

but we're not worrying about ε yet

- Basic idea more formally
 - Recall that for an NFA, δ : Q x $\Sigma \epsilon \rightarrow P(Q)$
 - Use the states of M to represent subsets of Q.
 - If there is one state of M for every subset of Q, then the non-determinism of N can be eliminated.
 - This technique, called <u>subset construction</u>, is a primary means for removing non-determinism from an NFA.

- Formal definition
 - Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA
 - We define a DFA, $M = (Q', \Sigma, \delta', q_0', F')$
 - $\cdot Q' = P(Q)$

Notational abuse – although written as a set, this • $q_0' = \{q_0\}$ Notational abuse – althoug is a single state in the DFA

- For $R \in Q'$ and $a \in \Sigma$,
- $\delta'(R,a) = \int \delta(r,a)$

• $F' = \{R \in Q' \mid R \cap F \neq \emptyset \}$

We use R to make clear that the individual states of M are themselves subsets of Q

Algorithm for building M (NFA-to-DFA)

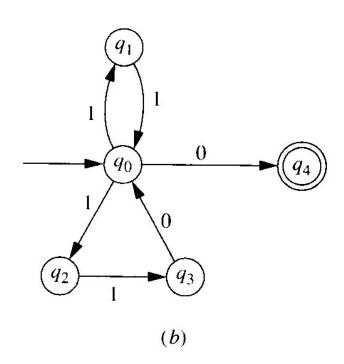
- 1. Add $\{q_0\}$ to Q' -- Make it the initial state of M and mark it as unfinished
- 2. Repeat until all states of M are marked as finished
 - 1. Take any unfinished state V from M (i.e. $V \in Q$ ') that has no outgoing edge for some symbol a.
 - 2. For all states q in V (recall $V \subseteq Q$) determine the set of states W that can be reached by following the transition from q on input a.

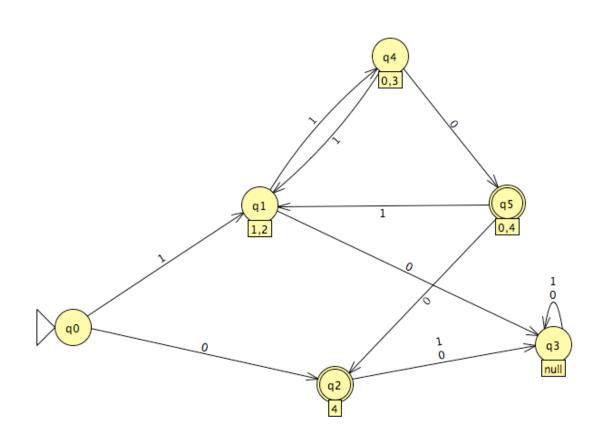
$$W = \bigcup_{q \in V} \delta(q, a)$$

- 3. Add W to states of M (add W to Q') if not already there.
- 4. Add transition in M from V to W on input a.
- 5. Mark V as finished if it has a transition arrow out for each symbol.

Mark every state in M that contains a final state from N as a state in M.

Example





NFAs with ϵ -transitions

- What if the NFA has ϵ -transitions?
- Recall:
 - States in DFA correspond to set of states reachable in NFA on given input.
 - Must consider states that you can get to via ϵ -transitions.

€-Closure

- Define
 - For a set of states R
 - E(R) = all states that can be reached from R by traveling along 0 or more ϵ -transitions.
 - Is $E(R) \supseteq R$?
 - Yes

NFA -> DFA (Take 2)

- Formal definition
 - Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA
 - We define a DFA, $M = (Q', \Sigma, \delta', q_0', F')$
 - $\cdot Q' = P(Q)$
 - $q_0' = E (\{q_0\})$
 - $F' = \{R \in Q' \mid R \cap F \neq \emptyset \}$

NFA -> DFA (Take 2)

- Computing δ'
 - δ ' (S, a) for S \in Q', a \in Σ
 - Let $S = \{ p_1, p_2, ..., p_n \}$
 - Compute the set of all states reachable from states in S on input a using transitions from N.

$$R = \{r_1, r_2, \dots, r_m\} = \bigcup_{i=1}^{n} \delta(p_i, a)$$

• δ ' (S, a) will be the ϵ -closure of the set of states R

$$\delta'(S,a) = E(R)$$

- Algorithm for building M (NFA-to-DFA modified)
 - 1. Add $E(\{q_0\})$ to Q' -- Make it the initial state of M and mark it as unfinished
 - 2. Repeat until all states of M are marked as finished
 - 1. Take any unfinished state V from M (i.e. $V \in Q$ ') that has no outgoing edge for some symbol a.
 - 2. For all states q in V (recall $V \subseteq Q$) determine the set of states W that can be reached by following the transition from q on input a, followed by any number of ϵ -transitions.

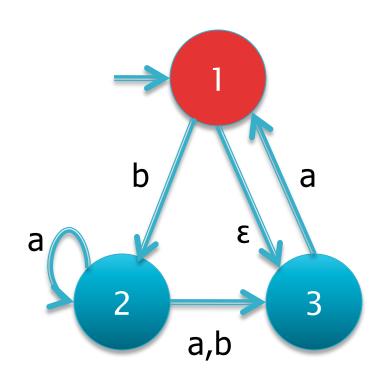
$$W = E\left(\bigcup_{q \in V} \delta(q, a)\right)$$

- 3. Add W to states of M (add W to Q') if not already there.
- 4. Add transition in M from V to W on input a.
- 5. Mark V as finished if it has a transition arrow out for each symbol.

Mark every state in M that contains a final state from N as a final state in M.

Example

Example 1.41 in Sipser



(red indicates accepting states)

Example

The NFA

$$\circ N = \{Q, \Sigma, \delta, q_0, F\}$$

$$Q = \{1, 2, 3\}$$

$$\circ \Sigma = \{a, b\}$$

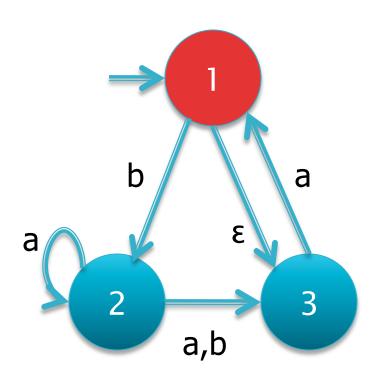
•
$$q_0 = 1$$

•
$$\delta$$
 (1,a) = \emptyset

•
$$\delta$$
 (1,a) = \emptyset δ (1,b) = {2}

•
$$\delta$$
 (2,a) = {2,3} δ (2, b) = {3}

•
$$\delta$$
 (3,a) = {1} δ (3, b) = \emptyset



$$δ$$
 (1, $ε$) = {3}

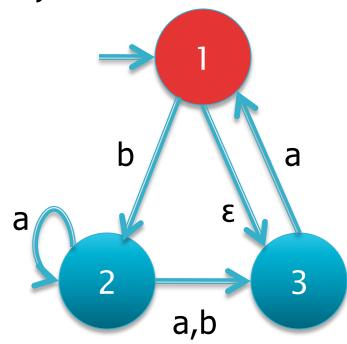
$$\delta$$
 (2, ϵ) = \emptyset

$$\delta$$
 (3, ϵ) = \emptyset

€-Closure

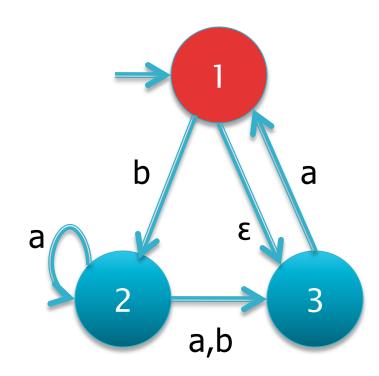
```
\triangleright E({1}) = {1, 3}
```

- ▶ E ({2}) = { 2}
- ▶ E ({3}) = { 3}



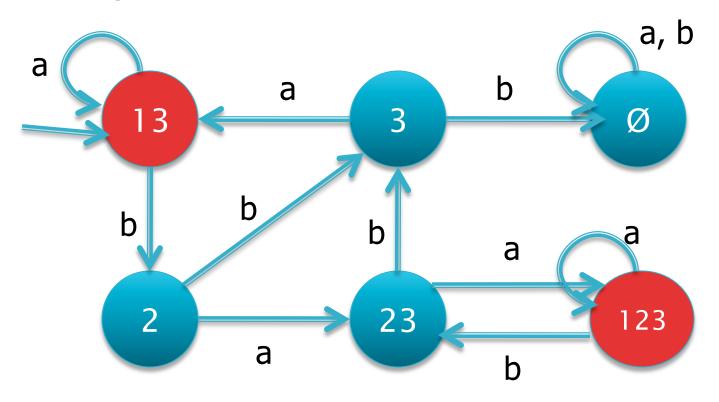
Example

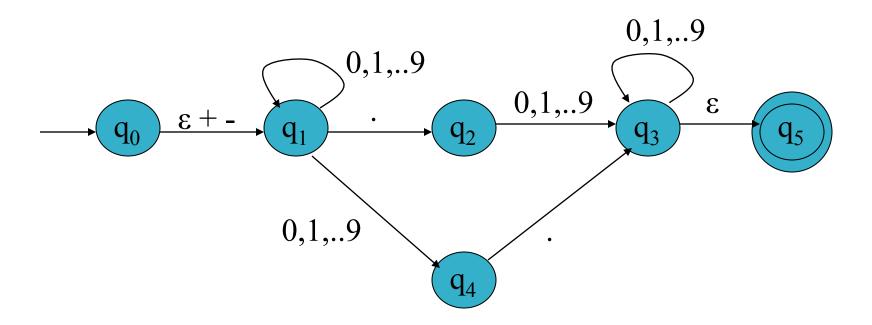
- The DFA, M
 - $\circ M = (Q', \Sigma, \delta', q_0', F')$
 - \circ Q' = { Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
 - $\circ \Sigma = \{a, b\}$
 - $q_0' = \{1, 3\}$
 - \circ F = {{1}, {1,2}, {1,3}, {1,2,3}}



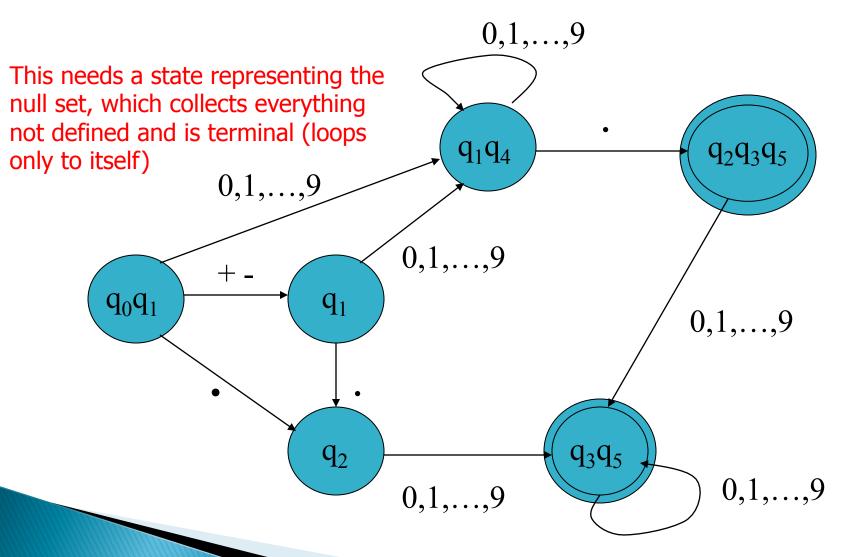
Example

The DFA





State	ε closure
q_0	$\{q_0, q_1\}$
q_1	$\{q_1\}$
q_2	$\{q_2\}$
q_3	$\{q_3, q_5\}$
q_4	$\{q_4\}$
q_5	$\{q_5\}$

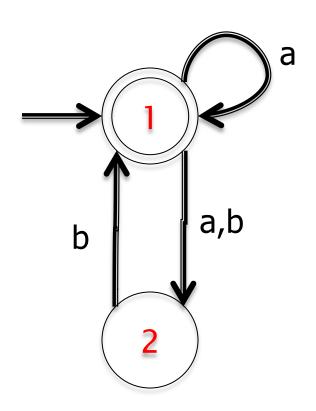


What We Have Shown

- For every DFA, there is an NFA that accepts the same language
- For every NFA, there is a DFA that accepts the same language

DFAs, NFAs are equivalent!

Practice Problem (Sipser 1.16a)



Construct an equivalent DFA for the given NFA

Practice Problem (Sipser 1.17)

- Give an NFA recognizing the language over {0,1} given by
 - $L(N) = \{01, 001, 010\}^*$
- Convert this NFA to an equivalent DFA. Include only reachable states.