Equivalence of DFAs and
NFAs

Equivalence

» What does it mean for two automata to be
equivalent?

- Two finite automata M, and M, are equivalent if
L(M,) = L(M,).
- If they accept the same language.

» NFA and DFA are equivalent if every
language that can be accepted by an NFA
can also be accepted by a DFA and vice

versa

DFA / NFA Equivalence

» How we will show this:

I. Given a DFA that accepts arbitrary language L,,
create an NFA that also accepts L,

2. Given an NFA that accepts arbitrary language L,,
create a DFA that also accepts L,

» By proving 1, we show that the class of languages that DFAs represent is a
subset of the class of languages that NFAs represent

» By proving 2, we show that the class of languages that NFAs represent is a
subset of the class of languages that DFAs represent

» Put them together, and that shows that DFAs and NFAs represent the same
class of languages!

Step 1: Given DFA find NFA

» Observe that a DFA can easily be converted to
an equivalent NFA:
- DFAs - all transitions lead to exactly one state

- Define the transitions of the NFA to consist of sets
of only 1 element. All e-transitions are to &J.

- (When we think of state diagrams, the DFA state
diagram is already an NFA state diagram)

- (Formally, however, we have to complete the definition
of the NFA by tweaking the transition function so that
the output are sets, and the function is fully defined

for all inputs (including e-transitions).

Step 2: Given NFA find DFA

» Given NFA find equivalent DFA
- Let N = (Q, X, 9, qy, F) be an NFA:

- We need to show that there exists a DFA
° M — (Q’1 21 6’1 qO’s F,)

> Such that L(N) = L(M)

> For now we’ll assume that N has no e-transitions.

NFA -> DFA

» Basic idea

- Recall that for an NFA, §: Q x ¢ — P(Q)

- In other words, the transition function moves from
one state to some set of states (0O or more).

- P(Q) is the power set of Q - the set of all possible
subsets of Q. The set of states we move to is some
member of this power set.

NFA -> DFA

- Recall: we used the Cartesian product to track two
machines simultaneously and build a machine that
represents the union of two machines

- We use a similar idea here to represent what the NFA
is doing

- Except the set of states for our new machine is not
the set of all possible ordered pairs (as in Cartesian
product)

- Instead it’s the set of all possible subsets of Q (i.e.
the power set P(Q)). At every step, we’ll be in some
collection of states (some element of P(Q)), we’ll read
a symbol, and we’ll move to some other set of states
(some element of P(Q))

NFA -> DFA

» The same idea said slightly differently

> Since the NFA can be in a set of states at any point,
construct the DFA so that its states correspond to all
the possible sets of states that the NFA could be in.

- For Cartesian product, if we had two machines with
|Q,| and |Q,| states, the union machine had

Q| * 1Q,| states

- |If the NFA has |Q| states, how many will the
constructed DFA have?

- IP(Q] = 2/

NFA -> DFA

but we're not worrying

» Basic idea more formally aboute yet
- Recall that for an NFA, §: Q x ¢ — P(Q)
- Use the states of M to represent subsets of Q.

- If there is one state of M for every subset of Q,
then the non-determinism of N can be
eliminated.

> This technique, called subset construction, is a
primary means for removing non-determinism
from an NFA.

m L —

NFA -> DFA

» Formal definition
- Let N = (Q, %, 9, qy, F) be an NFA
- We define a DFA,M=(Q", 3,8 q,, F)

. Q, ~ P(Q) N | ab Ithough h
’ otational abuse — although written as a set, this
’ q 0 — {CI ()} is a single state in the DFA

)
. n e X
For R € Q and a ’ We use R to make clear that
" O0'(R,a) = U(S(r,a) the individual states of M are

e R themselves subsets of Q

FF={REQ |RNF=J}

NFA -> DFA

» Algorithm for building M (NFA-to-DFA)

1. Add{qgy}to Q -- Make it the initial state of M and mark it as
unfinished

2. Repeat until all states of M are marked as finished

1. Take any unfinished state V from M (i.e. V € Q’) that has no
outgoing edge for some symbol a.

2. For all states g in V (recall V € Q) determine the set of states W
that can be reached by following the transition from g on input a.

W = Jé(g.2)
qeV
Add W to states of M (add W to Q’) if not already there.

3.
4. Add transition in M from V to W on input a.
5. Mark V as finished if it has a transition arrow out for each symbol.

NFA -> DFA

» Example

NFA -> DFA

q4
0,3
N
~
(as)
sl 1 \\EJ
1,2 0,4
h"
(]
1
A 0
q0
1 3
0 0 q
null
q2

NFAs with e-transitions

» What if the NFA has e-transitions?
» Recall:

- States in DFA correspond to set of states
reachable in NFA on given input.

- Must consider states that you can get to via
e-transitions.

e-Closure

» Define
- For a set of states R

- E(R) = all states that can be reached from R by
traveling along O or more e-transitions.

> |s E(R) 2 R?
- Yes

NFA -> DFA (Take 2)

» Formal definition
- Let N = (Q, £, 9, qy, F) be an NFA
- We definea DFAAM=(Q,Z,8,qy , F)
- Q" = P(Q)
° q()' =E ({qo})
-FF ={ReQ |RNF=g}

NFA -> DFA (Take 2)

» Computing &’
- d (S,a)forSeQ’,aex

‘ I—et S — { p]! p2! ey pn}
- Compute the set of all states reachable from states in S
on input a using transitions from N.

R = {I’i,l’z,“',l"m} = Ué (pi’a)
i=1

- 8 (S, a) will be the e-closure of the set of states R

5'(S,a) = E(R)

NFA -> DFA

» Algorithm for building M (NFA-to-DFA modified)

1. Add E({q,}) to Q" —- Make it the initial state of M and mark it
as unfinished

2. Repeat until all states of M are marked as finished

1. Take any unfinished state V from M (i.e. V € Q’) that has no
outgoing edge for some symbol a.

2. For all states g in V (recall V < Q) determine the set of states W
that can be reached by following the transition from g on input a,

followed by any number of e-transitions.
w = E| | Jo(g.a)
qeV

3. Add W to states of M (add W to Q’) if not already there.
4. Add transition in M from V to W on input a.
5. Mark V as finished if it has a transition arrow out for each symbol.

Example

» Example 1.41 in Sipser

(red indicates
accepting states)

. a,b

Example

»The NFA
N =1{Q, 2, 9, qq, F}
- Q =11, 2, 3} d
- 2 ={a, b}
o = |1 a,b
o F={1}
-0 (l,a) =9 o (1, b) = {2} o (1, e) ={3}
-0 (2,a) =1{2,3} 0 (2, b) ={3} 0 (2, €)=
-90(3,a)={1} 0@3,b)=0 0 (3, €) =

.

e-Closure

»E({1}) =11, 3}
»E({2}) =12}
» E({3}) =13}

. a,b

Example

» The DFA, M
© M:(Q’lzié,!qo’iF’)

- Q" =1{09, {1} {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
- ¥ ={a, b}

© CIo’ =1{1, 3}

- F={{1} {1,2}, {1,3}, {1,2,3}}

.

Example

» The DFA

NFA -> DFA

0,1,..9

0,1,..9
‘ e+ - ? . ‘ 0,1,..9 ‘QS

NFA -> DFA

State

¢ closure

NFA -> DFA

0,1,....9

This needs a state representing the
null set, which collects everything
not defined and is terminal (loops
only to itself)

0,1,....9

59

What We Have Shown

» For every DFA, there is an NFA that accepts
the same language

» For every NFA, there is a DFA that accepts
the same language

» DFAs, NFAs are equivalent!

Practice Problem (Sipser 1.16a)

d

equivalent DFA
for the given NFA

@ Construct an
b l a’b

Practice Problem (Sipser 1.17)

» Give an NFA recognizing the language over
{0,1} given by
- L(N) = {01, 001, O10}*

» Convert this NFA to an equivalent DFA.
Include only reachable states.

