

}  What does it mean for two automata to be
equivalent?
◦  Two finite automata M1 and M2 are equivalent if

L(M1) = L(M2).
◦  If they accept the same language.

}  NFA and DFA are equivalent if every
language that can be accepted by an NFA
can also be accepted by a DFA and vice
versa

}  How we will show this:
1.  Given a DFA that accepts arbitrary language L1,

create an NFA that also accepts L1
2.  Given an NFA that accepts arbitrary language L2,

create a DFA that also accepts L2

}  By proving 1, we show that the class of languages that DFAs represent is a
subset of the class of languages that NFAs represent

}  By proving 2, we show that the class of languages that NFAs represent is a
subset of the class of languages that DFAs represent

}  Put them together, and that shows that DFAs and NFAs represent the same
class of languages!

}  Observe that a DFA can easily be converted to
an equivalent NFA:
◦  DFAs – all transitions lead to exactly one state
◦  Define the transitions of the NFA to consist of sets

of only 1 element. All ε–transitions are to ∅.

�  (When we think of state diagrams, the DFA state
diagram is already an NFA state diagram)

�  (Formally, however, we have to complete the definition
of the NFA by tweaking the transition function so that
the output are sets, and the function is fully defined
for all inputs (including ε–transitions).

}  Given NFA find equivalent DFA
◦  Let N = (Q, Σ, δ, q0, F) be an NFA:

◦  We need to show that there exists a DFA
�  M = (Q’, Σ, δ’, q0’, F’)

◦  Such that L(N) = L(M)

◦  For now we’ll assume that N has no ε-transitions.

}  Basic idea
◦  Recall that for an NFA, δ: Q x Σε → P(Q)
�  In other words, the transition function moves from

one state to some set of states (0 or more).
�  P(Q) is the power set of Q – the set of all possible

subsets of Q. The set of states we move to is some
member of this power set.

◦  Recall: we used the Cartesian product to track two
machines simultaneously and build a machine that
represents the union of two machines
�  We use a similar idea here to represent what the NFA

is doing
�  Except the set of states for our new machine is not

the set of all possible ordered pairs (as in Cartesian
product)

�  Instead it’s the set of all possible subsets of Q (i.e.
the power set P(Q)). At every step, we’ll be in some
collection of states (some element of P(Q)), we’ll read
a symbol, and we’ll move to some other set of states
(some element of P(Q))

}  The same idea said slightly differently
◦  Since the NFA can be in a set of states at any point,

construct the DFA so that its states correspond to all
the possible sets of states that the NFA could be in.

◦  For Cartesian product, if we had two machines with
|Q1| and |Q2| states, the union machine had
�  |Q1| * |Q2| states

◦  If the NFA has |Q| states, how many will the
constructed DFA have?
�  |P(Q)| = 2|Q|

}  Basic idea more formally
◦  Recall that for an NFA, δ: Q x Σε → P(Q)
◦  Use the states of M to represent subsets of Q.
◦  If there is one state of M for every subset of Q,

then the non-determinism of N can be
eliminated.
◦  This technique, called subset construction, is a

primary means for removing non-determinism
from an NFA.

but we’re not worrying
about ε yet

}  Formal definition
◦ Let N = (Q, Σ, δ, q0, F) be an NFA
◦ We define a DFA, M = (Q’, Σ, δ’, q0’, F’)
� Q’ = P(Q)
� q0’ = {q0}
� For R ∈ Q’ and a ∈ Σ,
� 

� F’ = {R ∈ Q’ | R ∩ F ≠ ∅ }

€

" δ (R,a) = δ(r,a)
r∈R


We use R to make clear that
the individual states of M are
themselves subsets of Q

Notational abuse – although written as a set, this
is a single state in the DFA

}  Algorithm for building M (NFA-to-DFA)

1.  Add {q0} to Q’ -- Make it the initial state of M and mark it as
unfinished

2.  Repeat until all states of M are marked as finished
1.  Take any unfinished state V from M (i.e. V ∈ Q’) that has no

outgoing edge for some symbol a.
2.  For all states q in V (recall V ⊆ Q) determine the set of states W

that can be reached by following the transition from q on input a.

3.  Add W to states of M (add W to Q’) if not already there.
4.  Add transition in M from V to W on input a.
5.  Mark V as finished if it has a transition arrow out for each symbol.

3.  Mark every state in M that contains a final state from N as a
final state in M.

€

W = δ(q,a)
q∈V


}  Example

}  What if the NFA has ε-transitions?
}  Recall:
◦  States in DFA correspond to set of states

reachable in NFA on given input.
◦  Must consider states that you can get to via
ε-transitions.

}  Define
◦  For a set of states R
◦  E(R) = all states that can be reached from R by

traveling along 0 or more ε-transitions.

◦  Is E(R) ⊇ R?
�  Yes

}  Formal definition
◦ Let N = (Q, Σ, δ, q0, F) be an NFA
◦ We define a DFA, M = (Q’, Σ, δ’, q0’, F’)
� Q’ = P(Q)
� q0' = E ({q0})
� F’ = {R ∈ Q’ | R ∩ F ≠ ∅ }

}  Computing δ’
◦  δ’ (S, a) for S ∈ Q’, a ∈ Σ
�  Let S = { p1, p2, …, pn }
�  Compute the set of all states reachable from states in S

on input a using transitions from N.

�  δ’ (S, a) will be the ε-closure of the set of states R

€

R = {r1,r2,,rm} = δ (pi,a)
i=1

n



€

" δ (S,a) = E(R)

}  Algorithm for building M (NFA-to-DFA modified)

1.  Add E({q0}) to Q’ -- Make it the initial state of M and mark it
as unfinished

2.  Repeat until all states of M are marked as finished
1.  Take any unfinished state V from M (i.e. V ∈ Q’) that has no

outgoing edge for some symbol a.
2.  For all states q in V (recall V ⊆ Q) determine the set of states W

that can be reached by following the transition from q on input a,
followed by any number of ε-transitions.

3.  Add W to states of M (add W to Q’) if not already there.
4.  Add transition in M from V to W on input a.
5.  Mark V as finished if it has a transition arrow out for each symbol.

3.  Mark every state in M that contains a final state from N as a
final state in M.

€

W = E δ(q,a)
q∈V

$

%
&

'

(
)

}  Example 1.41 in Sipser

1

2 3

b

a

a,b

a

ε

(red indicates
accepting states)

}  The NFA
◦  N = {Q, Σ, δ, q0, F}

◦  Q = {1, 2, 3}
◦  Σ = {a, b}
◦  q0 = 1
◦  F = {1}
◦  δ (1,a) = ∅ δ (1, b) = {2} δ (1, ε) = {3}
◦  δ (2,a) = {2,3} δ (2, b) = {3} δ (2, ε) = ∅
◦  δ (3,a) = {1} δ (3, b) = ∅ δ (3, ε) = ∅

1

2 3

b

a

a,b

a

ε

}  E ({1}) = { 1, 3 }
}  E ({2}) = { 2 }
}  E ({3}) = { 3 }

1

2 3

b

a

a,b

a

ε

}  The DFA, M
◦  M = (Q’, Σ, δ’, q0’, F’)

◦  Q’ = { Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
◦  Σ = {a, b}
◦  q0’ = {1, 3}
◦  F = {{1}, {1,2}, {1,3}, {1,2,3}} 1

2 3

b

a

a,b

a

ε

}  The DFA

13 3 Ø

2 23 123

a

b

a

b

a b

a

b

b a

a, b

q0 q1 q2 q3 q5

q4

ε + -

0,1,..9

0,1,..9 .

ε . 0,1,..9

0,1,..9

State ε closure
q0 {q0, q1}
q1 {q1}
q2 {q2}
q3 {q3 , q5}
q4 {q4}
q5 {q5}

q0q1 q1
+ -

q2

.

q1q4
0,1,…,9

0,1,…,9

q2q3q5
.

.

q3q5
0,1,…,9 0,1,…,9

0,1,…,9

0,1,…,9

This needs a state representing the
null set, which collects everything
not defined and is terminal (loops
only to itself)

}  For every DFA, there is an NFA that accepts
the same language

}  For every NFA, there is a DFA that accepts
the same language

}  DFAs, NFAs are equivalent!

2

1

a

a,b b

Construct an
equivalent DFA
for the given NFA

}  Give an NFA recognizing the language over
{0,1} given by
◦  L(N) = {01, 001, 010}*

}  Convert this NFA to an equivalent DFA.
Include only reachable states.

