


}  What does it mean for two automata to be 
equivalent? 
◦  Two finite automata M1 and M2 are equivalent if 

L(M1) = L(M2). 
◦  If they accept the same language. 

}  NFA and DFA are equivalent if every 
language that can be accepted by an NFA 
can also be accepted by a DFA and vice 
versa 



}  How we will show this: 
1.  Given a DFA that accepts arbitrary language L1, 

create an NFA that also accepts L1 
2.  Given an NFA that accepts arbitrary language L2, 

create a DFA that also accepts L2 

}  By proving 1, we show that the class of languages that DFAs represent is a 
subset of the class of languages that NFAs represent 

}  By proving 2, we show that the class of languages that NFAs represent is a 
subset of the class of languages that DFAs represent 

}  Put them together, and that shows that DFAs and NFAs represent the same 
class of languages! 



}  Observe that a DFA can easily be converted to 
an equivalent NFA: 
◦  DFAs – all transitions lead to exactly one state 
◦  Define the transitions of the NFA to consist of sets 

of only 1 element.  All ε–transitions are to ∅. 

�  (When we think of state diagrams, the DFA state 
diagram is already an NFA state diagram) 

�  (Formally, however, we have to complete the definition 
of the NFA by tweaking the transition function so that 
the output are sets, and the function is fully defined 
for all inputs (including ε–transitions). 



}  Given NFA find equivalent DFA 
◦  Let N = (Q, Σ, δ, q0, F) be an NFA: 

◦  We need to show that there exists a DFA  
�  M = (Q’, Σ, δ’, q0’, F’) 

◦  Such that L(N) = L(M) 

◦  For now we’ll assume that N has no ε-transitions. 



}  Basic idea 
◦  Recall that for an NFA, δ: Q x Σε → P(Q) 
�  In other words, the transition function moves from 

one state to some set of states (0 or more). 
�  P(Q) is the power set of Q – the set of all possible 

subsets of Q.  The set of states we move to is some 
member of this power set. 



◦  Recall:  we used the Cartesian product to track two 
machines simultaneously and build a machine that 
represents the union of two machines 
�  We use a similar idea here to represent what the NFA 

is doing 
�  Except the set of states for our new machine is not 

the set of all possible ordered pairs (as in Cartesian 
product) 

�  Instead it’s the set of all possible subsets of Q (i.e. 
the power set P(Q)).  At every step, we’ll be in some 
collection of states (some element of P(Q)), we’ll read 
a symbol, and we’ll move to some other set of states 
(some element of P(Q)) 



}  The same idea said slightly differently 
◦  Since the NFA can be in a set of states at any point, 

construct the DFA so that its states correspond to all 
the possible sets of states that the NFA could be in. 

◦  For Cartesian product, if we had two machines with   
|Q1| and |Q2| states, the union machine had 
�   |Q1| * |Q2| states 

◦  If the NFA has |Q| states, how many will the 
constructed DFA have? 
�  |P(Q)| = 2|Q|  



}  Basic idea more formally 
◦  Recall that for an NFA, δ: Q x Σε → P(Q) 
◦  Use the states of M to represent subsets of Q. 
◦  If there is one state of M for every subset of Q, 

then the non-determinism of N can be 
eliminated. 
◦  This technique, called subset construction, is a 

primary means for removing non-determinism 
from an NFA. 

but we’re not worrying 
about ε yet 



}  Formal definition 
◦ Let N = (Q, Σ, δ, q0, F) be an NFA 
◦ We define a DFA, M = (Q’, Σ, δ’, q0’, F’) 
� Q’ = P(Q) 
� q0’ = {q0} 
� For R ∈ Q’ and a ∈ Σ, 
�    
 
� F’ = {R ∈ Q’ | R ∩ F ≠ ∅ } 

  

€ 

" δ (R,a) = δ(r,a)
r∈R


We use R to make clear that 
the individual states of M are 
themselves subsets of Q 

Notational abuse – although written as a set, this 
is a single state in the DFA 



}  Algorithm for building M (NFA-to-DFA) 
 

1.  Add {q0} to Q’ -- Make it the initial state of M and mark it as 
unfinished 

2.  Repeat until all states of M are marked as finished 
1.  Take any unfinished state V from M (i.e. V ∈ Q’) that has no 

outgoing edge for some symbol a. 
2.  For all states q in V  (recall V ⊆ Q) determine the set of states W 

that can be reached by following the transition from q on input a. 

3.  Add W to states of M (add W to Q’) if not already there. 
4.  Add transition in M from V to W on input a. 
5.  Mark V as finished if it has a transition arrow out for each symbol. 

3.  Mark every state in M that contains a final state from N as a 
final state in M. 

  

€ 

W = δ(q,a)
q∈V




}  Example 





}  What if the NFA has ε-transitions? 
}  Recall: 
◦  States in DFA correspond to set of states 

reachable in NFA on given input. 
◦  Must consider states that you can get to via 
ε-transitions. 



}  Define 
◦  For a set of states R 
◦  E(R) = all states that can be reached from R by 

traveling along 0 or more ε-transitions. 

◦  Is E(R) ⊇ R? 
�  Yes 



}  Formal definition 
◦ Let N = (Q, Σ, δ, q0, F) be an NFA  
◦ We define a DFA, M = (Q’, Σ, δ’, q0’, F’) 
� Q’ = P(Q) 
� q0' = E ({q0}) 
� F’ = {R ∈ Q’ | R ∩ F ≠ ∅ } 



}  Computing δ’ 
◦  δ’ (S, a) for S ∈ Q’, a ∈ Σ 
�  Let S = { p1, p2, …, pn } 
�  Compute the set of all states reachable from states in S 

on input a using transitions from N. 

�  δ’ (S, a) will be the ε-closure of the set of states R  
 

  

€ 

R = {r1,r2,,rm} = δ (pi,a)
i=1

n



€ 

" δ (S,a) = E(R)



}  Algorithm for building M (NFA-to-DFA modified) 
 

1.  Add E({q0}) to Q’ -- Make it the initial state of M and mark it 
as unfinished 

2.  Repeat until all states of M are marked as finished 
1.  Take any unfinished state V from M (i.e. V ∈ Q’) that has no 

outgoing edge for some symbol a. 
2.  For all states q in V (recall V ⊆ Q) determine the set of states W 

that can be reached by following the transition from q on input a, 
followed by any number of ε-transitions. 

3.  Add W to states of M (add W to Q’) if not already there. 
4.  Add transition in M from V to W on input a. 
5.  Mark V as finished if it has a transition arrow out for each symbol. 

3.  Mark every state in M that contains a final state from N as a 
final state in M. 

  

€ 

W = E δ(q,a)
q∈V

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}  Example 1.41 in Sipser 
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}  The NFA  
◦  N = {Q, Σ, δ, q0, F} 

◦  Q = {1, 2, 3} 
◦  Σ = {a, b} 
◦  q0 = 1 
◦  F = {1} 
◦  δ (1,a) = ∅  δ (1, b) = {2}          δ (1, ε) = {3} 
◦  δ (2,a) = {2,3}  δ (2, b) = {3}  δ (2, ε) = ∅  
◦  δ (3,a) = {1}  δ (3, b) = ∅   δ (3, ε) = ∅               
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}  E ( {1} ) = { 1, 3 } 
}  E ( {2} ) = { 2 } 
}  E ( {3} ) = { 3 } 
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}  The DFA, M 
◦  M = (Q’, Σ, δ’, q0’, F’) 

◦  Q’ = { Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} 
◦  Σ = {a, b} 
◦  q0’ = {1, 3} 
◦  F = {{1}, {1,2}, {1,3}, {1,2,3}} 1 
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}  The DFA 
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q0 q1 q2 q3 q5 

q4 

ε + - 

0,1,..9 

0,1,..9 . 

ε . 0,1,..9 

0,1,..9 



State ε closure 
q0 {q0, q1} 
q1 {q1} 
q2 {q2} 
q3 {q3 , q5} 
q4 {q4} 
q5 {q5} 



q0q1 q1 
+ - 

q2 

. 

q1q4 
0,1,…,9 

0,1,…,9 

q2q3q5 
. 

. 

q3q5 
0,1,…,9 0,1,…,9 

0,1,…,9 

0,1,…,9 

This needs a state representing the 
null set, which collects everything 
not defined and is terminal (loops 
only to itself) 



}  For every DFA, there is an NFA that accepts 
the same language 

}  For every NFA, there is a DFA that accepts 
the same language 

 

}  DFAs, NFAs are equivalent! 
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equivalent DFA 
for the given NFA 



}  Give an NFA recognizing the language over 
{0,1} given by 
◦  L(N) = {01, 001, 010}* 

}  Convert this NFA to an equivalent DFA.  
Include only reachable states. 


