Formal Definition of NFA

Based on slides of Aaron Deever

Recall: NFA

- Non-determinism
 - When machine is in a given state and reads a symbol:
 - The machine may have a choice of where to move to next.
 - There may be states where, after reading a given symbol, the machine has nowhere to go
 - Applying the transition function will give, not necessarily 1 state, but 0 or more states.
 - A DFA is just a special case of an NFA

Formal Definition of NFA

- A Non-Deterministic Finite Automata is a 5-tuple
 (Q, Σ, δ, q_o, F) where
 - *Q* is a finite set (of states)
 - $\circ \Sigma$ is a finite alphabet of symbols
 - $q_o \in Q$ is the start state
 - $F \subseteq Q$ is the set of final (accepting) states
 - δ is a function from $Q \ge \Sigma_{\varepsilon}$ to P(Q) (transition function)

• $\Sigma \varepsilon = \Sigma \cup \{\varepsilon\}$

• P(Q) = power set of Q = set of all subsets of Q.

Formal Definition of NFA

Transition function

- δ is a function from $Q \ge \Sigma \varepsilon$ to P(Q)
- δ (q, a) = subset of Q (possibly empty)
- Examples:
 - δ (q₃, 0) = {q₀}
 - δ (q₀, 1) = {q₁, q₂}
 - δ (q₄, 1) = Ø
 - δ (q₀, ϵ) = {q₁, q₂}

usual case, but set notation

- multiple arrows out with common symbol
- no arrow out with that symbol
- two epsilon branches out of that state

Language Accepted by a NFA

- Let $M = (Q, \Sigma, \delta, q_o, F)$ be an NFA
- And let w be a string over the alphabet Σ
- We say M accepts w if we can write $w = w_1 w_2 ... w_m$ where each $w_i \in \Sigma \epsilon$ and
 - A sequence of states $r_0r_1...r_m$ exists with the conditions:
 - $r_0 = q_0$
 - $r_{i+1} \in \delta$ (r_i , w_{i+1}) for i = 0, ..., m-1
 - $r_m \in F$
 - Note that there may be more than one way to write w that satisfies the conditions
 - Note that w_i can be ϵ

Non-Deterministic Finite Automata

- Are the following strings accepted by the NFA below:
 - aab
 - aaba

Non-Deterministic Finite Automata

Language accepted by M

• $L(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}$

- If L is a language over Σ, L is accepted by M if and only if L = L(M).
 - For all $w \in L$, w is accepted by M.
 - For all $w \notin L$, w is rejected by M.

Formal NFA Example

- Suppose we have NFA N = ($Q, \Sigma, \delta, q_o, F$)
 - How can we convert this NFA into an equivalent NFA, N', having only 1 accept state?
 - What is the formal definition of N'?

DFA / NFA Equivalence

- Surprisingly enough
 - Adding non-determinism to our DFA does NOT give it any additional language accepting power.
 - DFAs and NFAs are equivalent
 - Every language that is accepted by an NFA is also accepted by a DFA and vice versa

Thanks for your attention!

