Regular Operations

Based on slides of Aaron Deever

Closure Properties

- A collection of objects is closed under a particular operation if applying that operation to members of the collection returns an object still in that collection
- Examples:
- Yes Is the set of integers closed under multiplication?
- No Is the set of integers closed under division?
- Yes Is the set of positive integers closed under addition?
 - Is the set of positive integers closed under
- No subtraction?

Closure Properties of Regular Languages

- Regular Languages are closed under each of these operations:
 - Union
 - If A is regular and B is regular then $A \cup B$ is regular.
 - Concatenation
 - If A is regular and B is regular then AB is regular.
 - Kleene Star
 - If A is regular, then A* is regular.
 - (also Intersection, Complement, and Difference!)

Let's prove for union

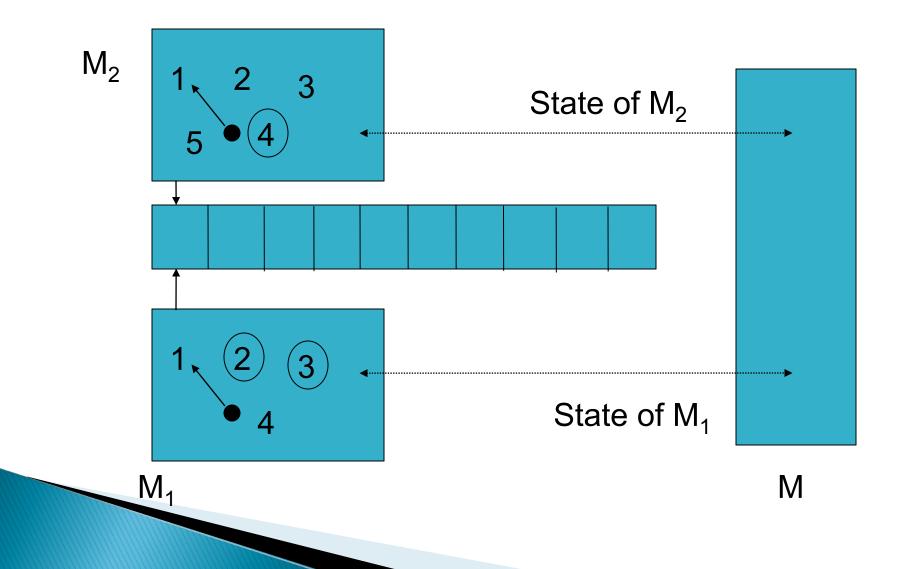
• By construction – we will build a DFA that

accepts $A \cup B$

Closure of Union Operation

Basic idea

- If L₁ and L₂ are regular, then by definition, there exist DFAs, M₁ and M₂ such that
 - $L_1 = L(M_1)$
 - $L_2 = L(M_2)$
- We will build a DFA, M, that for a single input w, will keep track of the current states of both M₁ and M₂ as they read w.
 - Any time *either one* of the machines M_1 and M_2 accepts w, the machine M will accept w.
- We will refer to this as the *Cartesian Product Construction*

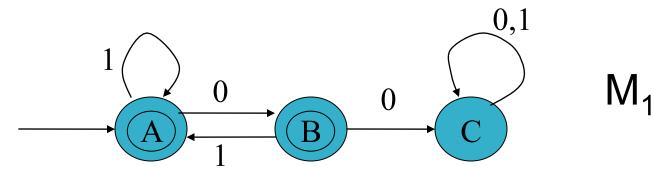


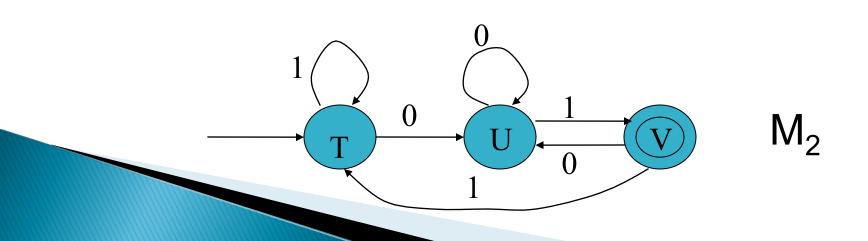
- Let L₁ and L₂ be regular languages and let
- $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA that accepts L_1
- $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be a DFA that accepts L_2

- We will build a new DFA, M, such that
 - $\circ\,$ Each state of M is an ordered pair (p, q) where $p\in Q_1$ and $q\in Q_2$
 - Informally, the states of M will represent the current states of M₁ and M₂ at each simultaneous move of the machines.
 - How many states will machine M have?
 - Given that M_1 has 4 states in our example
 - Given that M₂ has 5 states in our example

- Formally...
 - $M = (Q, \Sigma, \delta, q_0, F)$ where
 - $\mathbf{Q} = \mathbf{Q}_1 \times \mathbf{Q}_2$
 - $q_o = (q_1, q_2)$
 - δ : $(\mathbf{Q}_1 \times \mathbf{Q}_2) \times \Sigma \rightarrow (\mathbf{Q}_1 \times \mathbf{Q}_2)$
 - δ ((p,q), a) = (δ_1 (p,a), δ_2 (q,a))
 - $F = \{ (r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2 \}$

L₁ = { w | 00 is not a substring of w}
L₂ = { w | w ends in 01}





•
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

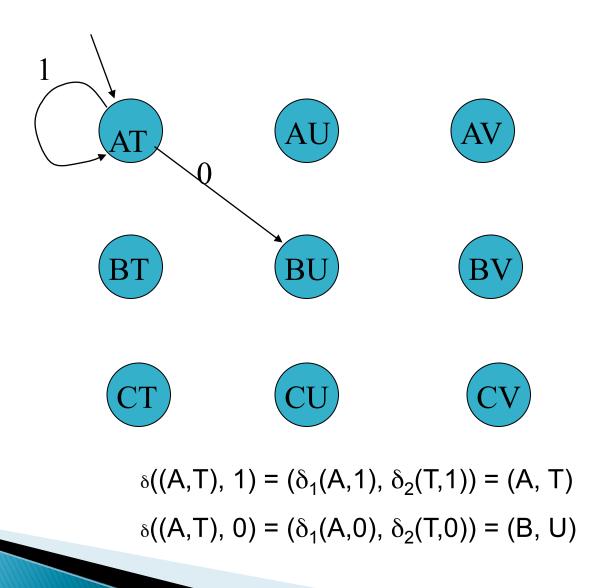
•
$$M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$$

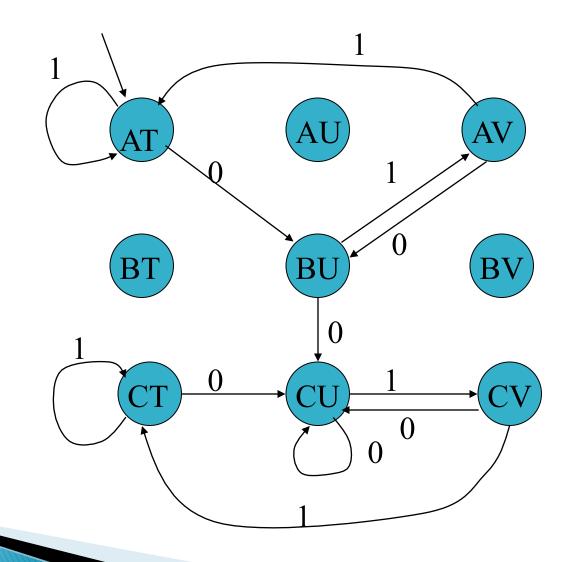
•
$$Q_2 = \{T, U, V\}$$

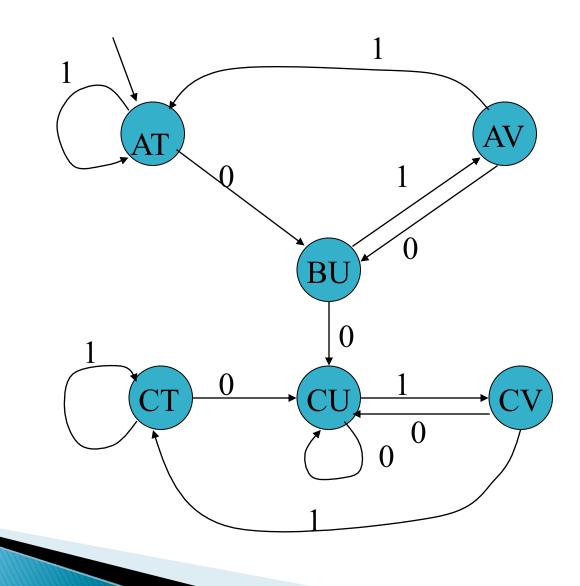
• $q_2 = T$
• $F_2 = \{V\}$

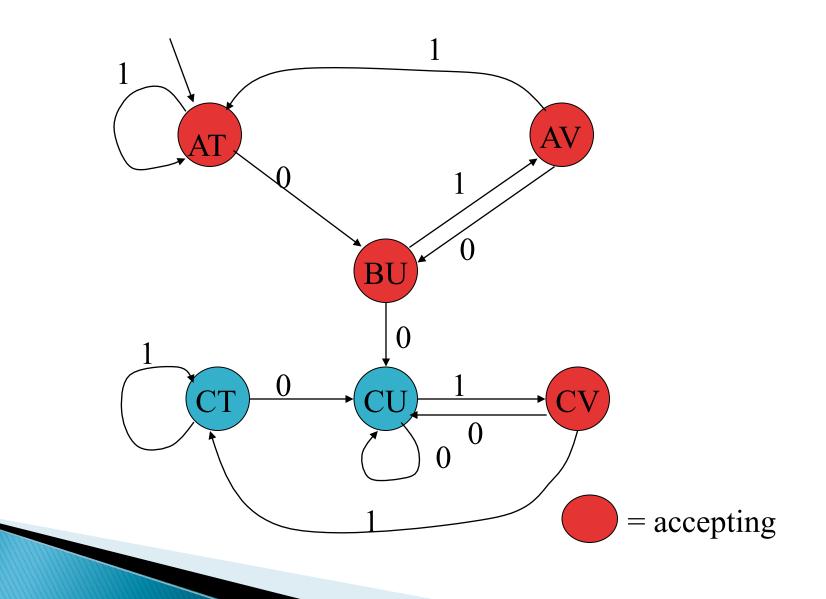
- M = (Q, Σ , δ , q₀, F)
 - \circ Q = {AT, AU, AV, BT, BU, BV, CT, CU, CV}
 - $\circ q_0 = AT$
 - \circ F = {AT, AU, AV, BT, BU, BV, CV}
 - Note that AT corresponds to the ordered pair (A,T), but we're just naming states here, so we can call them whatever we want











- We've shown regular languages to be closed under Union
 - By definition
 - $L_1 = L(M_1)$ and $L_2 = L(M_2)$
 - \circ Built a DFA, M that accepts $L_1 \cup L_2$
 - M simulates the simultaneous running of $\rm M_1$ and $\rm M_2$ on the same string.
 - Defined accepting states of M based on the operation.

Intersection and Difference

- Note that the same argument can be used to show that regular languages are closed under:
 - Intersection
 - Difference
 - What needs to change in the previous construction?

Intersection and Difference

Set of accepting states

• Union

- $F = \{(p,q) \mid p \in F_1 \text{ or } q \in F_2\}$
- Intersection
 - $F = \{(p,q) \mid p \in F_1 \text{ and } q \in F_2\}$
- Difference
 - $F = \{(p,q) \mid p \in F_1 \text{ and } q \notin F_2\}$

Complementation

- How can we show regular languages are closed under complementation?
- Given machine $M = (Q, \Sigma, \delta, q_0, F)$
 - One way: construct $M' = (Q, \Sigma, \delta, q_0, Q-F)$
 - Another way: Consider language of all strings (Σ^*).
 - Just an accepting start state that loops to itself
 - This is a regular language
 - Complement: $A' = \Sigma^* A$
 - Regular languages closed under difference

What about Concatenation and Kleene Star?

- Use same approach (constructive proof)
- Will need to introduce a new finite automata technique called NON-DETERMINISM...
- But before we get to that, a couple additional concepts related to what we've seen so far.

Using Closure Properties

- Using closure properties of regular languages to show that a particular language, A, is not regular
 - Proof by contradiction
 - Need to use an additional language, B, that is already known/proven to be not regular
 - Assume A is regular
 - Show that language A when combined (via union, intersection, difference, or complementation) with some known regular language, yields language B
 - Contradicts closure properties of regular languages

A few language classes

- Regular languages
- Non-regular languages (all languages that aren't regular)
- Finite languages
 - languages containing a finite number of strings
- Infinite languages (all languages that aren't finite)

Question: Are all finite languages regular?

Recall – Specifying Languages

- How do we specify languages?
 - If language is finite, we can list all of its strings.
 - L = {a, aa, aba, aca}
 - Using basic language operations
 - $L = \{aa, ab\}^* \cup \{b\}\{bb\}^*$
 - Descriptive:
 - $L = \{w | n_a(w) = n_b(w)\}$
 - L = {w | w begins with an a and ends with a b}

Regular Operations

- Some important operations over regular languages:
 - Union:
 - $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
 - Concatenation:
 - $AB = \{ wx \mid w \in A \text{ and } x \in B \}$
 - Kleene Star

$$A^* = \bigcup_{i=0}^{\infty} A^i = A^0 \cup A^1 \cup A^2 \cup A^3 \cup A^4 \dots$$

Examples Describing Languages using Regular Operations

- Consider the languages {0}, {1}, {€}, Ø and use regular operations (union, concatenation, Kleene star) on these languages to represent:
- The language of all strings over {0,1} that end with a 0
 - ► ANSWER: ({0} ∪ {1})*{0}

Note we're combining languages, so everything must be expressed as a language (i.e. a *set* of strings in set notation, even when the set is just the individual string 0 or 1)

Examples Describing Languages using Regular Operations

- Consider the languages {0}, {1}, {∈}, Ø and use regular operations (union, concatenation, Kleene star) on these languages to represent:
 - The language of all strings over {0,1}:
 - With exactly one 0
 - With exactly one 0 or exactly one 1
 - With exactly two 0's
 - With an even number of 0's (zero 0's should be included)
 - With 1110 as a substring
 - Of even length

