
Based on slides of Aaron Deever

}  A collection of objects is closed under a
particular operation if applying that operation
to members of the collection returns an
object still in that collection

}  Examples:
◦  Is the set of integers closed under multiplication?
◦  Is the set of integers closed under division?
◦  Is the set of positive integers closed under addition?
◦  Is the set of positive integers closed under

subtraction?

Yes
No
Yes

No

}  Regular Languages are closed under each
of these operations:
◦  Union
�  If A is regular and B is regular then A ∪ B is regular.
◦  Concatenation
�  If A is regular and B is regular then AB is regular.
◦  Kleene Star
�  If A is regular, then A* is regular.
◦  (also Intersection, Complement, and Difference!)

}  Let’s prove for union
◦  By construction – we will build a DFA that

accepts A ∪ B

}  Basic idea
◦  If L1 and L2 are regular, then by definition, there

exist DFAs, M1 and M2 such that
�  L1 = L(M1)
�  L2 = L(M2)
◦  We will build a DFA, M, that for a single input w, will

keep track of the current states of both M1 and M2
as they read w.
�  Any time either one of the machines M1 and M2 accepts

w, the machine M will accept w.

}  We will refer to this as the Cartesian Product
Construction

1 2 3

4

1 2 3
4 5

State of M1

State of M2

M1

M2

M

}  Let L1 and L2 be regular languages and let

}  M1 = (Q1, Σ, δ1, q1, F1) be a DFA that accepts L1

}  M2 = (Q2, Σ, δ2, q2, F2) be a DFA that accepts L2

}  We will build a new DFA, M, such that
◦  Each state of M is an ordered pair (p, q) where

p ∈ Q1 and q ∈ Q2

◦  Informally, the states of M will represent the

current states of M1 and M2 at each
simultaneous move of the machines.

◦  How many states will machine M have?
�  Given that M1 has 4 states in our example
�  Given that M2 has 5 states in our example

}  Formally…
◦  M = (Q, Σ, δ, q0, F) where
�  Q = Q1 x Q2

�  qo = (q1, q2)

�  δ: (Q1 x Q2) x Σ → (Q1 x Q2)

�  δ ((p,q), a) = (δ1(p,a), δ2(q,a))

�  F = { (r1, r2) | r1 ∈ F1 or r2 ∈ F2 }

}  L1 = { w | 00 is not a substring of w}
}  L2 = { w | w ends in 01}

1

1

1

0

0

0
T U V

1

1

0 0
A B C

0,1

M1

M2

}  M1 = (Q1, Σ, δ1, q1, F1)

◦  Q1 = {A, B, C}
◦  q1 = A
◦  F1 = {A, B}

}  M2 = (Q2, Σ, δ2, q2, F2)

◦  Q2 = {T, U, V}
◦  q2 = T
◦  F2 = {V}

}  M = (Q, Σ, δ, q0, F)
◦  Q = {AT, AU, AV, BT, BU, BV, CT, CU, CV}
◦  q0 = AT
◦  F = {AT, AU, AV, BT, BU, BV, CV}

◦  Note that AT corresponds to the ordered pair (A,T),

but we’re just naming states here, so we can call
them whatever we want

AT AU AV

BT

CT

BU BV

CU CV

δ ((A,T), 1) = (δ1(A,1), δ2(T,1)) = (A, T)

δ ((A,T), 0) = (δ1(A,0), δ2(T,0)) = (B, U)

AT AU AV

BT

CT

BU BV

CU CV

1

0

AT AU AV

BT

CT

BU BV

CU CV

1

0

0

1

0

1

0

0

1
0

1

1

AT AV

CT

BU

CU CV

1

0

0

0

1

0

0

1
0

1

1

1

AT AV

CT

BU

CU CV

1

0

0

0

1

0

0

1
0

1 = accepting

1

1

}  We’ve shown regular languages to be closed
under Union
◦  By definition
�  L1 = L(M1) and L2 = L(M2)

◦  Built a DFA, M that accepts L1 ∪ L2
�  M simulates the simultaneous running of M1 and M2 on

the same string.
�  Defined accepting states of M based on the operation.

}  Note that the same argument can be used to
show that regular languages are closed
under:
◦  Intersection
◦  Difference

◦  What needs to change in the previous construction?

}  Set of accepting states
◦  Union
�  F = {(p,q) | p ∈ F1 or q ∈ F2}
◦  Intersection
�  F = {(p,q) | p ∈ F1 and q ∈ F2}
◦  Difference
�  F = {(p,q) | p ∈ F1 and q ∉ F2}

}  How can we show regular languages are
closed under complementation?

}  Given machine M = (Q, Σ, δ, q0, F)

◦  One way: construct M’ = (Q, Σ, δ, q0, Q-F)

◦  Another way: Consider language of all strings (Σ*).
�  Just an accepting start state that loops to itself
�  This is a regular language
�  Complement: A’ = Σ* - A

�  Regular languages closed under difference

}  Use same approach (constructive proof)

}  Will need to introduce a new finite automata

technique called NON-DETERMINISM…

}  But…before we get to that, a couple

additional concepts related to what we’ve
seen so far.

}  Using closure properties of regular languages
to show that a particular language, A, is not
regular
◦  Proof by contradiction
◦  Need to use an additional language, B, that is

already known/proven to be not regular
◦  Assume A is regular
◦  Show that language A when combined (via union,

intersection, difference, or complementation) with
some known regular language, yields language B
�  Contradicts closure properties of regular languages

}  Regular languages
}  Non-regular languages (all languages that

aren’t regular)

}  Finite languages
◦  languages containing a finite number of strings

}  Infinite languages (all languages that aren’t
finite)

}  Question: Are all finite languages regular?

}  How do we specify languages?
◦  If language is finite, we can list all of its strings.
�  L = {a, aa, aba, aca}
◦  Using basic language operations
�  L = {aa, ab}* ∪ {b}{bb}*

◦  Descriptive:
�  L = {w | na(w) = nb(w)}
�  L = {w | w begins with an a and ends with a b}

}  Some important operations over regular
languages:
◦  Union:
�  A ∪ B = { w | w ∈ A or w ∈ B }
◦  Concatenation:
�  AB = { wx | w ∈ A and x ∈ B }
◦  Kleene Star
�  A* = Ai = A0∪A1

i=0

∞

 ∪A2∪A3∪A4...

}  Consider the languages {0}, {1}, {ε}, ∅ and use
regular operations (union, concatenation,
Kleene star) on these languages to represent:

}  The language of all strings over {0,1} that end

with a 0
}  ANSWER: ({0} ∪ {1})*{0}

Note we’re combining languages, so everything
must be expressed as a language (i.e. a *set* of
strings in set notation, even when the set is just
the individual string 0 or 1)

}  Consider the languages {0}, {1}, {ε}, ∅ and use regular
operations (union, concatenation, Kleene star) on these
languages to represent:

}  The language of all strings over {0,1}:

}  With exactly one 0
}  With exactly one 0 or exactly one 1
}  With exactly two 0’s
}  With an even number of 0’s (zero 0’s should be included)
}  With 1110 as a substring
}  Of even length

