Regular Operations

Based on slides of Aaron Deever

Closure Properties

» A collection of objects is closed under a

particular operation if applying that operation
to members of the collection returns an
object still in that collection

» Examples:

Yes - Is the set of integers closed under multiplication?
NOo - Is the set of integers closed under division?
Yes -

Is the set of positive integers closed under addition?

Is the set of positive integers closed under
NO subtraction?

(@)

Closure Properties of Regular
Languages

» Regular Languages are closed under each

of these operations:
> Union
- If A'is regular and B is regular then A U B is regular.
- Concatenation
- If Ais regular and B is regular then AB is regular.
- Kleene Star
- If Ais regular, then A" is regular.

> (also Intersection, Complement, and Difference!)

» Let’s prove for union
> By construction - we will build a DFA that

Closure of Union Operation

» Basic idea

- If L, and L, are regular, then by definition, there
exist DFAs, M, and M, such that
. L, = L(M,)
. L, = L(M,)

- We will build a DFA, M, that for a single input w, will
keep track of the current states of both M, and M,
as they read w.

- Any time either one of the machines M, and M, accepts
w, the machine M will accept w.

» We will refer to this as the Cartesian Product
_ Construction

Closure of Union

State of M,

State of M,

Closure of Union

» Let L, and L, be regular languages and let
» M, = (Q,, %, 6,, q;, F;) be a DFA that accepts L,

» M, = (Q,, %, 5,5, 9, F») be a DFA that accepts L,

Closure of Union

» We will build a new DFA, M, such that

- Each state of M is an ordered pair (p, q) where
pEQ,and g€ Q,

> Informally, the states of M will represent the
current states of M, and M, at each
simultaneous move of the machines.

- How many states will machine M have?
- Given that M, has 4 states in our example
- Given that M, has 5 states in our example

Closure of Union

» Formally...
- M =(Q, %, 9, qy, F) where
- Q=0Q;,xQ,

* 0, = (a7, 9,)

* 0! (Q] XQz)XZQ(Q1 XQz)
° 0 ((p’q); a) = (6](p!a)l 62(q1a))

Union: Example

» L, ={w | 00 is not a substring of w}
»L,={w|wendsinO01}

0,1
e'® "
1@ O

0
()

: :‘Mz
s 10/

Union: Example

4 M] — (Q]! 21 6]1 q]! F1)

OQ]:{A’B!C}
c gy =A
OF]:{AyB}

b Mz — (Q21 21 621 4z, FZ)

Union: Example

(Q 2 6 qO! F)
{AT, AU, AV, BT, BU, BV, CT, CU, CV}
AT

Q
q =
- F = {AT, AU, AV, BT, BU, BV, CV}

- Note that AT corresponds to the ordered pair (A,T),
but we’re just naming states here, so we can call
them whatever we want

Union: Example

\

Union: Example
s
(A, T), 1) = (64(A,1), 85(T,1)) = (A, T)

)
‘ o((A,T), 0) = (64(A,0), 05(T,0)) = (B, U)

Union: Example
| 1
C(\Q)
s o
0
0o . .

w
@

v

Union: Example

@Q?

e

Union: Example
C\ I
« »
| 0
@ - acoepting

Closure of Union

» We've shown reqgular languages to be closed
under Union
> By definition
- L, = LM,) and L, = L(M,)

> Built a DFA, M that accepts L, U L,

- M simulates the simultaneous running of M, and M, on
the same string.

- Defined accepting states of M based on the operation.

Intersection and Difference

» Note that the same argument can be used to

show that regular languages are closed
under:

> |Intersection
- Difference

- What needs to change in the previous construction?

Intersection and Difference

» Set of accepting states
> Union
- F={(p,a) [pEF,orqgeF,}
> |ntersection
- F={(p,a) | pEF, and g €F,}
- Difference
- F={(p,q) | pEF,and g & F,}

Complementation

» How can we show regular languages are
closed under complementation?

» Given machine M = (Q, 2, §, q,, F)

- One way: construct M’ = (Q, %, 9, q,, Q-F)

- Another way: Consider language of all strings (2*).
- Just an accepting start state that loops to itself
- This is a regular language
- Complement: A’ =23* - A

- Regular languages closed under difference

What about Concatenation and
Kleene Star?

» Use same approach (constructive proof)

» Will need to introduce a new finite automata
technique called NON-DETERMINISM...

» But---before we get to that, a couple
additional concepts related to what we’ve
seen so far.

Using Closure Properties

» Using closure properties of regular languages
to show that a particular language, A, is not
regular
- Proof by contradiction

- Need to use an additional language, B, that is
already known/proven to be not regular

- Assume A is regular

- Show that language A when combined (via union,
intersection, difference, or complementation) with
some known regular language, yields language B

- Contradicts closure properties of regular languages

A few language classes

» Regular languages

» Non-reqgular languages (all languages that
aren’t regular)

» Finite languages
- languages containing a finite number of strings

» Infinite languages (all languages that aren’t
finite)

» Question: Are all finite languages regular?

Recall - Specifying Languages

» How do we specify languages?

- If language is finite, we can list all of its strings.
- L = {a, aa, aba, aca}

- Using basic language operations
- L = {aa, ab}" U {bHbb}

- Descriptive:
- L={w [n,(w) = ny(w)}
- L ={w | w begins with an a and ends with a b}

Regular Operations

» Some important operations over regular
languages:
> Union:
-AUB={w|weAorweB}

- Concatenation:
-AB={wx |weEAand xE B}

> Kleene oSotar
A =UAi —A'UuAluA*UAUAY..
1=0

Examples Describing Languages
using Regular Operations

» Consider the languages {0}, {1}, {€}, & and use
regular operations (union, concatenation,
Kleene star) on these languages to represent:

» The language of all strings over {0,1} that end
with a 0

» ANSWER: ({0} U {1})*{0}

Note we're combining languages, so everything
must be expressed as a language (i.e. a *set* of
strings in set notation, even when the set is just
the individual string 0 or 1)

Examples Describing Languages
using Regular Operations

» Consider the languages {0}, {1}, {€}, & and use regular
operations (union, concatenation, Kleene star) on these
languages to represent:

» The language of all strings over {0,1}:

» With exactly one 0

» With exactly one 0 or exactly one 1

» With exactly two O’s

» With an even number of 0’s (zero 0’s should be included)
» With 1110 as a substring

» Of even length

