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}  A collection of objects is closed under a 
particular operation if applying that operation 
to members of the collection returns an 
object still in that collection 

}  Examples: 
◦  Is the set of integers closed under multiplication? 
◦  Is the set of integers closed under division? 
◦  Is the set of positive integers closed under addition? 
◦  Is the set of positive integers closed under 

subtraction? 

Yes 
No 
Yes 
 
No 



}  Regular Languages are closed under each 
of these operations: 
◦  Union 
�  If A is regular and B is regular then A ∪ B is regular. 
◦  Concatenation 
�  If A is regular and B is regular then AB is regular. 
◦  Kleene Star 
�  If A is regular, then A* is regular. 
◦  (also Intersection, Complement, and Difference!) 
 

}  Let’s prove for union 
◦  By construction – we will build a DFA that 

accepts A ∪ B  



}  Basic idea 
◦  If L1 and L2 are regular, then by definition, there 

exist DFAs, M1 and M2 such that 
�  L1 = L(M1) 
�  L2 = L(M2) 
◦  We will build a DFA, M, that for a single input w, will 

keep track of the current states of both M1 and M2  
as they read w. 
�  Any time either one of the machines M1 and M2 accepts 

w, the machine M will accept w. 
 

}  We will refer to this as the Cartesian Product 
Construction 
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}  Let L1 and L2 be regular languages and let 
 
}  M1 = (Q1, Σ, δ1, q1, F1) be a DFA that accepts L1  
  
}  M2 = (Q2, Σ, δ2, q2, F2) be a DFA that accepts L2 



}  We will build a new DFA, M, such that 
◦  Each state of M is an ordered pair (p, q) where 

p ∈ Q1 and q ∈ Q2 
 
◦  Informally, the states of M will represent the 

current states of M1 and M2 at each 
simultaneous move of the machines. 

 
◦  How many states will machine M have? 
�  Given that M1 has 4 states in our example 
�  Given that M2 has 5 states in our example 



}  Formally… 
◦  M = (Q, Σ, δ, q0, F)  where 
�  Q = Q1 x Q2 
 
�  qo = (q1, q2) 
 
�  δ: (Q1 x Q2) x Σ → (Q1 x Q2)  

 
�  δ ((p,q), a) = (δ1(p,a), δ2(q,a)) 
 

�  F = { (r1, r2) | r1 ∈ F1 or r2 ∈ F2 }  



}  L1 = { w | 00 is not a substring of w} 
}  L2 = { w | w ends in 01} 
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}  M1 = (Q1, Σ, δ1, q1, F1) 
 
◦  Q1 = {A, B, C} 
◦  q1 = A 
◦  F1 = {A, B} 

 
}  M2 = (Q2, Σ, δ2, q2, F2) 

 
◦  Q2 = {T, U, V}  
◦  q2 = T 
◦  F2 = {V} 



}  M  = (Q, Σ, δ, q0, F) 
◦  Q = {AT, AU, AV, BT, BU, BV, CT, CU, CV} 
◦  q0  = AT 
◦  F = {AT, AU, AV, BT, BU, BV, CV} 
 
◦  Note that AT corresponds to the ordered pair (A,T), 

but we’re just naming states here, so we can call 
them whatever we want 
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δ ((A,T), 1) = (δ1(A,1), δ2(T,1)) = (A, T) 

δ ((A,T), 0) = (δ1(A,0), δ2(T,0)) = (B, U) 
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}  We’ve shown regular languages to be closed 
under Union 
◦  By definition 
�  L1 = L(M1)  and  L2 = L(M2) 
 
◦  Built a DFA, M that accepts L1 ∪ L2 
�  M simulates the simultaneous running of M1 and M2 on 

the same string. 
�  Defined accepting states of M based on the operation. 



}  Note that the same argument can be used to 
show that regular languages are closed 
under: 
◦  Intersection 
◦  Difference 
 
◦  What needs to change in the previous construction? 



}  Set of accepting states 
◦  Union 
�  F = {(p,q) | p ∈ F1 or q ∈ F2} 
◦  Intersection 
�  F = {(p,q) | p ∈ F1 and q ∈ F2} 
◦  Difference 
�  F = {(p,q) | p ∈ F1 and q ∉ F2} 
 



}  How can we show regular languages are 
closed under complementation? 

}  Given machine M = (Q, Σ, δ, q0, F) 
 
◦  One way:  construct M’ = (Q, Σ, δ, q0, Q-F) 
 
◦  Another way:  Consider language of all strings (Σ*). 
�  Just an accepting start state that loops to itself 
�  This is a regular language 
�  Complement:  A’ = Σ* - A 

�  Regular languages closed under difference 



}  Use same approach (constructive proof) 
 
}  Will need to introduce a new finite automata 

technique called NON-DETERMINISM… 
 
}  But…before we get to that, a couple 

additional concepts related to what we’ve 
seen so far. 

 
 



}  Using closure properties of regular languages 
to show that a particular language, A, is not 
regular 
◦  Proof by contradiction 
◦  Need to use an additional language, B, that is 

already known/proven to be not regular 
◦  Assume A is regular 
◦  Show that language A when combined (via union, 

intersection, difference, or complementation) with 
some known regular language, yields language B 
�  Contradicts closure properties of regular languages 



}  Regular languages 
}  Non-regular languages (all languages that 

aren’t regular) 
 
}  Finite languages 
◦  languages containing a finite number of strings 

}  Infinite languages (all languages that aren’t 
finite) 

 
}  Question:  Are all finite languages regular? 



}  How do we specify languages? 
◦  If language is finite, we can list all of its strings. 
�  L = {a, aa, aba, aca} 
◦  Using basic language operations 
�  L = {aa, ab}* ∪ {b}{bb}* 

◦  Descriptive: 
�  L = {w | na(w) = nb(w)} 
�  L = {w | w begins with an a and ends with a b} 



}  Some important operations over regular 
languages: 
◦  Union:   
�  A ∪ B = { w | w ∈ A or w ∈ B } 
◦  Concatenation: 
�  AB = { wx | w ∈ A and x ∈ B } 
◦  Kleene Star 
�    A* = Ai = A0∪A1

i=0

∞

 ∪A2∪A3∪A4...



}  Consider the languages {0}, {1}, {ε}, ∅ and use 
regular operations (union, concatenation, 
Kleene star) on these languages to represent: 

 
}  The language of all strings over {0,1} that end 

with a 0 
}  ANSWER:  ({0} ∪ {1})*{0} 

Note we’re combining languages, so everything 
must be expressed as a language (i.e. a *set* of 
strings in set notation, even when the set is just 
the individual string 0 or 1) 



}  Consider the languages {0}, {1}, {ε}, ∅ and use regular 
operations (union, concatenation, Kleene star) on these 
languages to represent: 

 
}  The language of all strings over {0,1}: 
 

}  With exactly one 0 
}  With exactly one 0 or exactly one 1 
}  With exactly two 0’s 
}  With an even number of 0’s (zero 0’s should be included) 
}  With 1110 as a substring 
}  Of even length 




