Deterministic Finite Automata Part II

Based on slides of Aaron Deever

Deterministic Finite Automata

Consist of:

- A set of states
- A start state
- A set of accepting states
- Input alphabet
- Transition function

Let's define an automaton formally

Deterministic Finite Automata

- A deterministic finite automaton (finitestate machine) is a 5-tuple (Q, Σ , δ , q_o , F) where
 - *Q* is a finite set (of states)
 - $\circ \Sigma$ is a finite alphabet of symbols
 - δ is a function from $Q \ge \Sigma$ to Q (transition function)

• $\delta : Q \times \Sigma \rightarrow Q$

- $q_o \in Q$ is the start state
- $F \subseteq Q$ is the set of final states

Transition Function

- The transition function
 - δ is a function from $Q \ge \Sigma$ to Q
 - $\delta(q, a) = q'$ where
 - q, q' $\in Q$
 - $a \in \Sigma$
 - δ defines, given a current state q and input symbol a, to which state the DFA will move.

Language Accepted by a DFA

• Let $M = (Q, \Sigma, \delta, q_o, F)$ be a DFA

- A string $w = w_1 w_2 \dots w_n$ is <u>accepted</u> by M if:
 - A sequence of states $r_0r_1...r_n \in Q$ exists with the following conditions:
 - $r_0 = q_0$
 - δ (r_i, w_{i+1}) = r_{i+1} for i = 0, ..., n-1
 - $r_n \in F$
 - If a string w is not accepted by M it is said to be rejected by M.

Language Accepted by a DFA

In other words:

• A string $w \in \Sigma^*$ is <u>accepted</u> by M if:

Starting in the start state q₀
Running the machine with input w
The machine ends up in a final (accept) state

•If a string w is not accepted by M it is said to be <u>rejected</u> by M.

Language Accepted by a DFA

The language <u>accepted</u> or <u>recognized</u> by M is:

• $L(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}$

- If A is a language over Σ , A is accepted by M if and only if A = L(M).
 - For all w ∈ A, w is accepted by M.
 For all w ∉ A, w is rejected by M.

Regular Languages

- Definition:
 - Language A is <u>regular</u> if and only if there exists a <u>finite automaton</u> M such that:
 - A = L(M)
 - All regular languages are accepted by some finite automaton
 - Are all languages regular?
 - No (we'll get to examples later of languages that are not regular – there is no way to represent them with a finite automaton)

Example using Formal Definition

- Sometimes you can't use a state diagram to represent a finite automaton
 - Number of states might be impractically large
 - The automaton might depend on an unspecified parameter
- Example:
 - Let $\Sigma = \{0, 1, 2\}$
 - For each *i* > 0, let *A_i* be the language of all strings where the sum of the numbers is a multiple of *i*.
 - (for simplicity, define empty string to have sum 0 so it is accepted)

How to describe the machine M_i that recognizes A_i ?

A Non-Regular Language

- $L = \{0^n 1^n \mid n \ge 0\}$
- How might we prove that L is not regular?
 - Proof by contradiction
 - If L is regular, there is some finite state machine that recognizes L
 - Because there are only finite states, as more and more 0's are read, eventually a state must repeat
 - Suppose reading either 0^j or 0^k ends in a common state
 - Should the machine end in an accepting state if it subsequently reads 1^k?
 - YES and NO this is a contradiction

Summary

What we've learned so far:

- A DFA can be expressed by (Q, Σ , δ , q_o , F)
- Transition function: $\delta: Q \times \Sigma \rightarrow Q$
- DFA accepting a string
- The language accepted by a DFA
- All languages accepted by some DFA are regular
- Not all languages are regular