Deterministic Finite
Automata Part Il

Based on slides of Aaron Deever

Deterministic Finite Automata

» Consist of:
- A set of states
o A start state
- A set of accepting states
> Input alphabet
> Transition function

» Let’s define an automaton formally

Deterministic Finite Automata

» A deterministic finite automaton (finite-
state machine) is a 5-tuple (Q, %, 9, q,, F)
where
- Qis a finite set (of states)

- X is a finite alphabet of symbols

> 8 is a function from Q x = to Q (transition
function)

- d:Qx2=-Q
> g,€ Qis the start state
- FC Qs the set of final states

Transition Function

» The transition function
> 9 is a function from Qx = to Q
-8 (g, a) = qg where
*q,9 €Q
- a€E>

- § defines, given a current state g and input symbol
a, to which state the DFA will move.

Language Accepted by a DFA

» Let M = (Q, %, 9, g,, F) be a DFA
» A string w = w,w,...w, is accepted by M if:
> A sequence of states ryr,...r, € Q exists with the
following conditions:
"o = do
- d(r,wi,,)=r,, fori=0,.., n-1
- r,eF

» If a string w is not accepted by M it is said to be
rejected by M.

Language Accepted by a DFA

» In other words:

» A string w € X" is accepted by M if:

-Starting in the start state q,
cRunning the machine with input w
-The machine ends up in a final (accept) state

°If a string w is not accepted by M it is said to be
rejected by M.

Language Accepted by a DFA

» The language accepted or recognized by M is:

- L(IM) ={weZX | wis accepted by M }

» If Ais a language over 3, A is accepted by M
if and only if A = L(M).

- For all w € A, w is accepted by M.
- For all w & A, w is rejected by M.

Regular Languages

» Definition:

- Language A is regular if and only if there exists a
finite automaton M such that:
- A =L(M)

- All reqular languages are accepted by some finite
automaton

- Are all languages regular?

- No - (we’ll get to examples later of languages that are
not regular - there is no way to represent them with a
finite automaton)

Example using Formal Definition

» Sometimes you can’t use a state diagram to
represent a finite automaton
- Number of states might be impractically large
- The automaton might depend on an unspecified
parameter
» Example:
- Let X =1{0, 1, 2}
- For each i > 0, let A; be the language of all strings

where the sum of the numbers is a multiple of i.
- (for simplicity, define empty string to have sum 0 so it is accepted)

A Non-Regular Language
» L={0"1" | n > 0}

» How might we prove that L is not regular?
> Proof by contradiction

- If L is regular, there is some finite state machine that
recognizes L

- Because there are only finite states, as more and
more O’s are read, eventually a state must repeat
- Suppose reading either 0J or Ok ends in a common state

- Should the machine end in an accepting state if it
subsequently reads 1k?
- YES and NO - this is a contradiction

Summary

» What we’ve learned so far:
- A DFA can be expressed by (Q, %, 9, q,, F
> Transition function: 6: Q xX — Q
- DFA accepting a string
- The language accepted by a DFA
- All languages accepted by some DFA are regular
- Not all languages are regular

