
Based on slides of Aaron Deever

}  Goal: universal model of computation
◦  What can and can not be computed?

}  To start: restricted model of computation
◦  Finite automata
�  Model for a computer with limited memory
�  Fixed, finite number of states it can be in
�  Can only retain its current state

}  Suppose we want to design a machine that
can keep track of whether we get more
“heads” than “tails” when we flip a coin
◦  Input is a string over the alphabet Σ = {0,1}

}  Can we build a finite automaton that can keep

track of this?
}  What if we are only interested in whether the

total number of heads is an even number –
can a finite automaton keep track of this?

}  Given a string, and a definition of a language
(set of strings), is the string a member of the
language?

Language
recognition
machine

Input string

YES, string is
in Language

NO, string is
not in
Language

}  Over the course of the semester, we will be
looking at classes of languages:
◦  Each class will have its own means for describing a

language
◦  Each class will have its own machine model for

string recognition
◦  Languages and machines get more complex as we

move forward in the course.

}  A language is a set of strings.

}  A class of languages is nothing more than a

set of languages

}  Today we start looking at our first class of
languages: Regular languages
◦  Machine for accepting: Finite Automata
◦  Means of defining: Regular Expressions

}  A deterministic finite automaton (DFA)
consists of:
◦  A read tape (with symbols on it)
◦  A machine with a fixed, finite number of states.

◦  At any point, the machine is in one of these states.
�  Start state – The state the machine is in at the

beginning of execution
�  Accepting states – The state(s) the machine has to be

in after execution in order for a string to be “accepted”	
�  There may be 0 or more of these

�  Non-accepting states
�  There may be 0 or more of these

Input tape

State machine

1 2

3

4
5

This holds the input string

In this example (we’ll define
formal notation later):

• Current state (arrow)
• Starting state (1)
• Accepting states (circles)

}  How the automaton works
◦  Reads a character (symbol from alphabet) on the

tape
◦  Based on the character read and the current state of

the machine, puts machine into another state
◦  Moves the read head to the right
◦  Repeats the above until all characters have been

read.

}  Testing a string for membership
◦  Place the string to be tested on the read tape
◦  Place the machine in the start state
◦  Let the machine run to completion
◦  If, upon completion, the machine is in an accepting

state, the string is accepted, otherwise it is not.

}  Transition function
◦  Defines what state the machine will move into

given:
�  The current machine state
�  The character read off the tape

}  A finite automaton is sometimes illustrated as
a directed graph where nodes represent
states and labelled edges represent
transitions.
◦  State diagram

}  Example:
◦  L = {w ∈ {a,b}* | w has an odd number of a’s and an

 even number of b’s}

a’s # b’s
0 even even
1 odd even
2 odd odd
3 even odd

0

1

2

3

a

a

a

a
b
b

b

b

}  The DFA can also be specified by a table

a b

→ 0 1 3

*1 0 2

2 3 1

3 2 0

STATE

SYMBOL

}  Another example
◦  L = {w ∈ {0,1}* | w contains 01 as a substring}

A B C
0 1

1 0 0,1

}  More Examples

◦  L = {w ∈ {0,1}* | w does not contain 01 as a substring}

◦  L = {w ∈ {0,1}* | w begins with a 1 and ends with a 0}

◦  L = {w ∈ {0,1}* | w contains at least 3 1’s}

◦  L = {w ∈ {0,1}* | every odd position of w is a 1}
�  w = w1w2…wk
�  ε ∈ L

◦  See Exercise 1.6 in Sipser for more.

