
Based on slides of Aaron Deever 



}  Goal:  universal model of computation 
◦  What can and can not be computed? 

 
}  To start:  restricted model of computation 
◦  Finite automata 
�  Model for a computer with limited memory 
�  Fixed, finite number of states it can be in 
�  Can only retain its current state 

 



}  Suppose we want to design a machine that 
can keep track of whether we get more 
“heads” than “tails” when we flip a coin 
◦  Input is a string over the alphabet Σ = {0,1} 

 
}  Can we build a finite automaton that can keep 

track of this? 
}  What if we are only interested in whether the 

total number of heads is an even number – 
can a finite automaton keep track of this? 
 



}  Given a string, and a definition of a language 
(set of strings), is the string a member of the 
language? 

 

Language 
recognition 
machine 

Input string 

YES, string is 
in Language 

NO, string is 
not in 
Language 



}  Over the course of the semester, we will be 
looking at classes of languages: 
◦  Each class will have its own means for describing a 

language 
◦  Each class will have its own machine model for 

string recognition 
◦  Languages and machines get more complex as we 

move forward in the course. 



}  A language is a set of strings. 
 
}  A class of languages is nothing more than a 

set of languages 



}  Today we start looking at our first class of 
languages: Regular languages 
◦  Machine for accepting: Finite Automata 
◦  Means of defining: Regular Expressions 



}  A deterministic finite automaton (DFA) 
consists of: 
◦  A read tape (with symbols on it) 
◦  A machine with a fixed, finite number of states. 
 
◦  At any point, the machine is in one of these states. 
�  Start state – The state the machine is in at the 

beginning of execution 
�  Accepting states – The state(s) the machine has to be 

in after execution in order for a string to be “accepted”	
�  There may be 0 or more of these 

�  Non-accepting states 
�  There may be 0 or more of these 



Input tape 

State machine 

1 2 

3 

4 
5 

This holds the input string 

In this example (we’ll define 
formal notation later): 
 
• Current state (arrow) 
• Starting state (1) 
• Accepting states (circles) 



}  How the automaton works 
◦  Reads a character (symbol from alphabet) on the 

tape 
◦  Based on the character read and the current state of 

the machine, puts machine into another state 
◦  Moves the read head to the right 
◦  Repeats the above until all characters have been 

read. 



}  Testing a string for membership 
◦  Place the string to be tested on the read tape 
◦  Place the machine in the start state 
◦  Let the machine run to completion 
◦  If, upon completion, the machine is in an accepting 

state, the string is accepted, otherwise it is not. 



}  Transition function 
◦  Defines what state the machine will move into 

given: 
�  The current machine state 
�  The character read off the tape 
 

}  A finite automaton is sometimes illustrated as 
a directed graph where nodes represent 
states and labelled edges represent 
transitions. 
◦  State diagram 
 

 



}  Example: 
◦  L = {w ∈ {a,b}* | w has an odd number of a’s and an 

                       even number of b’s} 

# a’s # b’s 
0 even even 
1 odd even 
2 odd odd 
3 even odd 

0 

1 

2 

3 

a 

a 

a 

a 
b 
b 

b 

b 



}  The DFA can also be specified by a table 
 

 
a b 

→ 0 1 3 

*1 0 2 

2 3 1 

3 2 0 

STATE 

SYMBOL 



}  Another example 
◦  L = {w ∈ {0,1}* | w contains 01 as a substring} 
 

A B C 
0 1 

1 0 0,1 



}  More Examples 
 
◦  L = {w ∈ {0,1}* | w does not contain 01 as a substring} 
 
◦  L = {w ∈ {0,1}* | w begins with a 1 and ends with a 0} 
 
◦  L = {w ∈ {0,1}* | w contains at least 3 1’s} 
 
◦  L = {w ∈ {0,1}* | every odd position of w is a 1} 
�  w = w1w2…wk  
�  ε ∈ L  

 
◦                            See Exercise 1.6 in Sipser for more. 
 
 
 
 


