Based on slides of Aaron Deever

Overview

Goal: universal model of computation
 What can and can not be computed?

To start: restricted model of computation

- Finite automata
 - Model for a computer with limited memory
 - Fixed, finite number of states it can be in
 - Can only retain its current state

Example

- Suppose we want to design a machine that can keep track of whether we get more "heads" than "tails" when we flip a coin
 Input is a string over the alphabet Σ = {0,1}
- Can we build a finite automaton that can keep track of this?
- What if we are only interested in whether the total number of heads is an even number – can a finite automaton keep track of this?

Language Recognition Machine

Given a string, and a definition of a language (set of strings), is the string a member of the language?

Language Classes

- Over the course of the semester, we will be looking at classes of languages:
 - Each class will have its own means for describing a language
 - Each class will have its own machine model for string recognition
 - Languages and machines get more complex as we move forward in the course.

Languages

A language is a set of strings.

 A class of languages is nothing more than a set of languages

Regular Languages

- Today we start looking at our first class of languages: Regular languages
 - <u>Machine for accepting</u>: Finite Automata
 - Means of defining: Regular Expressions

- A deterministic finite automaton (DFA) consists of:
 - A read tape (with symbols on it)
 - A machine with a fixed, finite number of states.
 - At any point, the machine is in one of these states.
 - Start state The state the machine is in at the beginning of execution
 - Accepting states The state(s) the machine has to be in after execution in order for a string to be "accepted"
 - There may be 0 or more of these
 - Non-accepting states
 - There may be 0 or more of these

- How the automaton works
 - Reads a character (symbol from alphabet) on the tape
 - Based on the character read and the current state of the machine, puts machine into another state
 - Moves the read head to the right
 - Repeats the above until all characters have been read.

- Testing a string for membership
 - Place the string to be tested on the read tape
 - Place the machine in the start state
 - Let the machine run to completion
 - If, upon completion, the machine is in an accepting state, the string is accepted, otherwise it is not.

- Transition function
 - Defines what state the machine will move into given:
 - The current machine state
 - The character read off the tape
- A finite automaton is sometimes illustrated as a directed graph where nodes represent states and labelled edges represent transitions.
 - State diagram

• Example:

• L = {w \in {a,b}* | w has an odd number of a's and an even number of b's}

	# a's	# b's
0	even	even
1	odd	even
2	odd	odd
3	even	odd

> The DFA can also be specified by a table

SYMBOL

Another example

• $L = \{w \in \{0,1\}^* \mid w \text{ contains } 01 \text{ as a substring}\}$

More Examples

- $L = \{w \in \{0,1\}^* \mid w \text{ does not contain 01 as a substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ begins with a 1 and ends with a 0}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains at least 3 1's}\}$
- $L = \{w \in \{0,1\}^* \mid every \text{ odd position of } w \text{ is a } 1\}$
 - $w = w_1 w_2 ... w_k$
 - $\epsilon \in L$

See Exercise 1.6 in Sipser for more.