

}  An alphabet is a non-empty, finite set of
symbols (usually denoted by Σ)
◦  Examples of alphabets:
�  {0, 1}
�  {α, β, χ, δ, φ, γ, η}
�  {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t , u, v, w,

x, y, z}
�  {a}

}  A string over Σ is a finite sequence (possibly
empty) of elements of Σ.

}  ε denotes the empty string, the string with no
symbols.
◦  Example strings over {a, b}
�  ε, a, aa, bb, aba, abbba
◦  NOT strings over {a, b}
�  aaaa…., abca

}  The length of a string w, denoted |w|, is the
number of symbols in the string
◦  Example:
�  |abbab| = 5
�  |a| = 1
�  |bbbbbbb| = 7
�  |ε| = 0

}  For any alphabet Σ, the set of all strings over
Σ is denoted as Σ*.

}  For w, x ∈ Σ*

◦ wx is the concatenation of w and x.
�  w = aba, x = bbb, wx = ababbb
�  For all w:

�  ε w = w ε = w
◦  wi for an integer i, indicates concatenation of w, i

times
�  w = aba, w3 = abaabaaba
�  For all w, w0 = ε

}  For a string w = w1w2…wn-1wn

The reverse of the string wR is the string with the

symbols written in reverse:

 wR = wnwn-1…w2w1

}  w is a substring of x if there exist y,z ∈ Σ*
(possibly ε) such that x = ywz.
◦  car is a substring of carnage, descartes, vicar, car,

but not a substring of charity.
}  w is a suffix of x if there exists y ∈ Σ* such

that x = yw.
}  w is a prefix of x if there exists y ∈ Σ* such

that x = wy.

}  A language is a set of strings made up of
symbols from a given alphabet.

}  A language over Σ is a subset of Σ* (recall that
Σ* is the set of all strings over Σ)
◦  Example
�  {a,b}* = {ε, a, b, aa, bb, ab, ba, aaa, bbb, baa, …}
◦  Example Languages over {a,b}
�  {ε, a, b, aa, bb} ∅
�  {w ∈ {a,b}* | |w| = 8} {w ∈ {a,b}* | |w| is odd}
�  {w ∈ {a,b}* | na(w) = nb(w)} {ε}
�  {w ∈ {a,b}* | na(w) = 2 and w starts with b}
�  Σ * is a language for any alphabet Σ

na(w) is the number of a’s in string w

}  Since languages are simply sets of strings,
regular set operations can be applied:
◦  For languages L1 and L2 over Σ

�  L1 ∪ L2 = all strings in L1 or L2
�  L1 ∩ L2 = all strings in both L1 and L2
�  L1 – L2 = strings in L1 that are not in L2

�  L’ = Σ* – L

}  If L1 and L2 are languages over Σ

◦  L1L2 = {wx | w ∈ L1 and x ∈ L2 }
◦ Example:
� L1 = {hope, fear}
� L2 = {less, fully}
� L1L2 = {hopeless, hopefully, fearless,

fearfully}

}  If L is a language over Σ

◦ Lk is the set of strings formed by
concatenating elements of L, k times.
◦ Example:
� L = {aa, bb}
� L3 = {aaaaaa, aaaabb, aabbaa, aabbbb,

bbbbbb, bbbbaa, bbaabb, bbaaaa}
� L0 = {ε}

}  The set of strings that can be obtained by
concatenating any number of elements of a
language L is called the Kleene Star, L*

✔ Note that since L* contains L0, ε is always an
element of L*

...432

0

10* LLLLLLL
i

i ∪∪∪∪==
∞

=

}  The set of strings that can be obtained by
concatenating one or more elements of a
language L is denoted L+

...432

1

1 LLLLLL
i

i ∪∪∪==
∞

=

+

Note that L* = L+ ∪ {ε}

}  How do we specify languages?
◦  If language is finite, we can list all of its strings.
�  L = {a, aa, aba, aca}
◦  Using basic language operations
�  L = {aa, ab}* ∪ {b}{bb}*

◦  Descriptive:
�  L = {w | na(w) = nb(w)}

}  We can also specify languages recursively…

}  Definition is given in terms of itself
}  Example: factorial
◦  0! = 1
◦  n! = n * (n-1)!

◦  4! = 4 * 3!
◦  = 4 * (3 * 2!)
◦  = 4 * (3 * (2 * 1!))
◦  = 4 * (3 * (2 * (1 * 0!)))
◦  = 4 * (3 * (2 * (1 * 1)))
◦  = 24

}  Languages can also be described by using a
recursive definition

1.  Initial elements are added to the set (BASIS)

2.  Additional elements are added to the set by
applying a rule(s) to the elements already in
the set (INDUCTION)

3.  Complete language is obtained by applying
step 2 repeatedly

}  Example: recursive definition of Σ*

1)  ε ∈ Σ*

2)  For all w ∈ Σ* and all a ∈ Σ, wa ∈ Σ*

3)  Nothing else is in Σ* unless it can be obtained by a
finite number of applications of rules 1 and 2

}  Example: recursive definition of Σ*
◦  Suppose Σ = {a,b}
◦  Consider applications of the recursive definition

1. i=0: Σ* = {ε}
2. i=1: Σ* = {ε, a, b}
3. i=2: Σ* = {ε, a, b, aa, ab, ba, bb}
4. i=3: Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba,

 abb, baa, bab, bba, bbb}
5. …

}  Example: recursive definition of L* (Kleene
star of language L)

1.  ε ∈ L*

2.  For all w ∈ L* and all x ∈ L, wx ∈ L*

3.  Nothing else is in L* unless it can be obtained by a
finite number of applications of rules 1 and 2

}  Example: recursive definition of L*
◦  Suppose L = {aa,abba}
◦  Consider applications of the recursive definition

1. i=0: L* = {ε}
2. i=1: L* = {ε, aa, abba}
3. i=2: L* = {ε, aa, abba, aaaa, aaabba, abbaaa,

 abbaabba}
4. …

}  Another Example: palindromes over Σ
◦  Palindromes read the same way forward and

backward

◦  First half of the string is a mirror image of the

second half

◦  E.g. a, b, aa, aba, babbab, bbabb, ε

}  Another Example: palindromes over Σ

1.  ε ∈ pal

2.  For all a ∈ Σ, a ∈ pal

3.  For all a ∈ Σ and all w ∈ pal, awa ∈ pal

4.  Nothing else is in pal unless it can be obtained by
a finite number of applications of rules 1-3

}  Another Example: palindromes over Σ
◦  Suppose Σ = {a,b}
◦  Consider applications of the recursive definition

1. i=0: pal = {ε, a, b}
2. i=1: pal = {ε, a, b, aa, bb, aaa, bab, aba, bbb}
3. i=2: pal = {ε, a, b, aa, bb, aaa, bab, aba,

bbb,aaaa, baab, abba, bbbb, aaaaa, baaab, ababa,
bbabb, aabaa, babab, abbba, bbbbb}

4.  ...

