Strings and Languages

What is an Alphabet?

- An alphabet is a non-empty, finite set of symbols (usually denoted by Σ)
 - Examples of alphabets:
 - {0, 1}
 - {α, β, χ, δ, φ, γ, η}
 - {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
 - {a}

What is a String?

- A *string over* Σ is a <u>finite sequence</u> (possibly empty) of elements of Σ .
- e denotes the <u>empty string</u>, the string with no symbols.
 - Example strings over {a, b}
 - ε, a, aa, bb, aba, abbba
 - NOT strings over {a, b}
 - aaaa...., abca

The Length of a String

- The <u>length</u> of a string w, denoted |w|, is the number of symbols in the string
 - Example:
 - |abbab| = 5
 - |a| = 1
 - |bbbbbbb| = 7
 - $|\varepsilon| = 0$

Concatenation of Strings

- For any alphabet Σ, the set of all strings over
 Σ is denoted as Σ^{*}.
- For w, $\mathbf{x} \in \Sigma^*$
 - wx is the <u>concatenation</u> of w and x.
 - w = aba, x = bbb, wx = ababbb
 - For all w:
 - $\epsilon w = w \epsilon = w$
 - wⁱ for an integer i, indicates concatenation of w, i times
 - w = aba, $w^3 = abaabaaba$
 - For all w, $w^0 = \varepsilon$

Reverse of a String

For a string $w = w_1 w_2 \dots w_{n-1} w_n$

The reverse of the string w^R is the string with the symbols written in reverse:

$$\mathbf{w}^{\mathsf{R}} = \mathbf{w}_{\mathsf{n}}\mathbf{w}_{\mathsf{n}-1}\dots\mathbf{w}_{\mathsf{2}}\mathbf{w}_{\mathsf{1}}$$

Some String-related Definitions

- w is a substring of x if there exist y,z $\in \Sigma^*$ (possibly ϵ) such that x = ywz.
 - car is a substring of <u>carnage</u>, des<u>cartes</u>, vicar, car, but not a substring of charity.
- w is a suffix of x if there exists $y \in \Sigma^*$ such that x = yw.
- w is a prefix of x if there exists $y \in \Sigma^*$ such that x = wy.

What is a Language?

- A language is a <u>set</u> of <u>strings</u> made up of symbols from a given <u>alphabet</u>.
- A language over Σ is a subset of Σ* (recall that Σ* is the set of *all* strings over Σ)
 - Example
 - $\{a,b\}^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, bbb, baa, ...\}$
 - Example Languages over {a,b}
 - {ε, a, b, aa, bb} Ø
 - $\{w \in \{a,b\}^* \mid |w| = 8\}$ $\{w \in \{a,b\}^* \mid |w| \text{ is odd}\}$
 - $\{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$ $\{\varepsilon\}$
 - { $w \in \{a,b\}^* \mid n_a(w) = 2 \text{ and } w \text{ starts with } b$ }
 - Σ^* is a language for any alphabet Σ

 $n_a(w)$ is the number of a's in string w

Operations on Languages

- Since languages are simply sets of strings, regular set operations can be applied:
 - $\,\circ\,$ For languages ${\rm L_1}$ and ${\rm L_2}$ over Σ
 - $L_1 \cup L_2 = all \text{ strings in } L_1 \text{ or } L_2$
 - $L_1 \cap L_2 = all \ strings \ in \ both \ L_1 \ and \ L_2$
 - $L_1 L_2 = strings$ in L_1 that are not in L_2

• L' =
$$\Sigma^* - L$$

Concatenation of Languages

- \blacktriangleright If L_1 and L_2 are languages over Σ
 - $\circ \ L_1L_2=\{wx \mid w\in L_1 \text{ and } x\in L_2\}$
 - Example:
 - $L_1 = \{\text{hope, fear}\}$
 - L₂ = {less, fully}
 - L₁L₂ = {hopeless, hopefully, fearless, fearfully}

Concatenation of Languages

 \blacktriangleright If L is a language over Σ

- L^k is the set of strings formed by concatenating elements of L, k times.
- Example:
 - L = {aa, bb}
 - L³ = {aaaaaa, aaaabb, aabbaa, aabbbb, bbbbbb, bbbbaa, bbaabb, bbaaaaa}
 - $L^0 = \{ \epsilon \}$

Kleene Star Operation

The set of strings that can be obtained by concatenating any number of elements of a language L is called the Kleene Star, L*

$$L^{*} = \bigcup_{i=0}^{\infty} L^{i} = L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \cup L^{4} \dots$$

Note that since L^{*} contains L⁰, E is always an element of L^{*}

Kleene Star Operation

 The set of strings that can be obtained by concatenating one or more elements of a language L is denoted L⁺

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i} = L^{1} \cup L^{2} \cup L^{3} \cup L^{4} \dots$$

Note that $L^* = L^+ \cup \{\epsilon\}$

Specifying Languages

How do we specify languages?

- If language is finite, we can list all of its strings.
 - L = {a, aa, aba, aca}
- Using basic language operations
 - $L = \{aa, ab\}^* \cup \{b\}\{bb\}^*$
- Descriptive:

•
$$L = \{w \mid n_a(w) = n_b(w)\}$$

We can also specify languages recursively...

Recursive Definitions

- Definition is given in terms of itself
- Example: factorial
 - 0! = 1
 - ∘ n! = n * (n−1)!

•
$$4! = 4 * 3!$$

• $= 4 * (3 * 2!)$
• $= 4 * (3 * (2 * 1!))$
• $= 4 * (3 * (2 * (1 * 0!)))$
• $= 4 * (3 * (2 * (1 * 1)))$
• $= 24$

- Languages can also be described by using a recursive definition
- 1. Initial elements are added to the set (BASIS)
- 2. Additional elements are added to the set by applying a rule(s) to the elements already in the set (INDUCTION)
- 3. Complete language is obtained by applying step 2 repeatedly

• Example: recursive definition of Σ^*

1) $\varepsilon \in \Sigma^*$

- 2) For all $w\in \Sigma^*\;$ and all $a\in \Sigma,$ $wa\in \Sigma^*\;$
- 3) Nothing else is in Σ^* unless it can be obtained by a finite number of applications of rules 1 and 2

- Example: recursive definition of Σ^*
 - Suppose $\Sigma = \{a, b\}$
 - Consider applications of the recursive definition

$$\begin{aligned} 1.i = 0: \Sigma^* &= \{\epsilon\} \\ 2.i = 1: \Sigma^* &= \{\epsilon, a, b\} \\ 3.i = 2: \Sigma^* &= \{\epsilon, a, b, aa, ab, ba, bb\} \\ 4.i = 3: \Sigma^* &= \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb\} \end{aligned}$$

 Example: recursive definition of L* (Kleene star of language L)

1. $\epsilon \in L^*$

- 2. For all $w \in L^*$ and all $x \in L$, $wx \in L^*$
- 3. Nothing else is in L* unless it can be obtained by a finite number of applications of rules 1 and 2

- Example: recursive definition of L*
 - Suppose L = {aa,abba}
 - Consider applications of the recursive definition

- Another Example: palindromes over Σ
 - Palindromes read the same way forward and backward
 - First half of the string is a mirror image of the second half
 - E.g. a, b, aa, aba, babbab, bbabb, ε

- > Another Example: palindromes over Σ
 - 1. $\epsilon \in pal$
 - 2. For all $a \in \Sigma$, $a \in pal$
 - 3. For all $a \in \Sigma$ and all $w \in pal$, $awa \in pal$
 - 4. Nothing else is in pal unless it can be obtained by a finite number of applications of rules 1-3

- \blacktriangleright Another Example: palindromes over Σ
 - Suppose $\Sigma = \{a, b\}$
 - Consider applications of the recursive definition

 $\begin{aligned} 1.i=0:pal &= \{\varepsilon, a, b\} \\ 2.i=1:pal &= \{\varepsilon, a, b, aa, bb, aaa, bab, aba, abb\} \\ 3.i=2:pal &= \{\varepsilon, a, b, aa, bb, aaa, bab, aba, abb, aaaa, bab, abb, aaaaa, baab, abba, abbb, aaaaa, baaba, abbb, aaaaa, babab, abbbb, aaaaa, babab, abbbbb} \\ 4. ... \end{aligned}$