


}  An alphabet is a non-empty, finite set of 
symbols (usually denoted by Σ) 
◦  Examples of alphabets: 
�  {0, 1} 
�  {α, β, χ, δ, φ, γ, η} 
�  {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t , u, v, w, 

x, y, z} 
�  {a} 



}  A string over Σ is a finite sequence (possibly 
empty) of elements of Σ. 

}  ε denotes the empty string, the string with no 
symbols. 
◦  Example strings over {a, b} 
�  ε, a, aa, bb, aba, abbba 
◦  NOT strings over {a, b} 
�  aaaa…., abca 
 



}  The length of a string w, denoted |w|, is the 
number of symbols in the string 
◦  Example: 
�  |abbab| = 5 
�  |a| = 1 
�  |bbbbbbb| = 7 
�  |ε| = 0 



}  For any alphabet Σ, the set of all strings over 
Σ is denoted as Σ*. 

}  For w, x ∈ Σ* 

◦ wx is the concatenation of w and x.  
�  w = aba,  x = bbb, wx = ababbb 
�  For all w: 

�   ε w = w ε = w 
◦  wi for an integer i, indicates concatenation of w, i 

times 
�  w = aba,  w3 = abaabaaba 
�  For all w, w0 = ε 



}  For a string w = w1w2…wn-1wn 
 
The reverse of the string wR is the string with the 

symbols written in reverse: 
 
 wR = wnwn-1…w2w1 



}  w is a substring of x if there exist y,z ∈ Σ* 
(possibly ε) such that x = ywz. 
◦  car is a substring of carnage, descartes, vicar, car, 

but not a substring of charity. 
}  w is a suffix of x if there exists y ∈ Σ* such 

that x = yw. 
}  w is a prefix of x if there exists y ∈ Σ* such 

that x = wy. 



}  A language is a set of strings made up of 
symbols from a given alphabet. 

}  A language over Σ is a subset of Σ* (recall that 
Σ* is the set of all strings over Σ) 
◦  Example 
�  {a,b}*  = {ε, a, b, aa, bb, ab, ba, aaa, bbb, baa, …} 
◦  Example Languages over {a,b} 
�  {ε, a, b, aa, bb}                       ∅
�  {w ∈ {a,b}* | |w| = 8}                {w ∈ {a,b}* | |w| is odd} 
�  {w ∈ {a,b}* | na(w) = nb(w)}       {ε} 
�  {w ∈ {a,b}* | na(w) = 2 and w starts with b} 
�  Σ * is a language for any alphabet Σ  

 
na(w) is the number of a’s in string w 



}  Since languages are simply sets of strings, 
regular set operations can be applied: 
◦  For languages L1 and L2 over Σ  

�  L1 ∪ L2 = all strings in L1 or L2 
�  L1 ∩ L2 = all strings in both L1 and L2 
�  L1 – L2 = strings in L1 that are not in L2 

�  L’ = Σ* – L 



}  If L1 and L2 are languages over Σ  

◦   L1L2 = {wx | w ∈ L1 and x ∈ L2 } 
◦ Example: 
� L1 = {hope, fear} 
� L2 = {less, fully} 
� L1L2 = {hopeless, hopefully, fearless, 

fearfully} 



}  If L is a language over Σ  

◦ Lk is the set of strings formed by 
concatenating elements of L, k times. 
◦ Example: 
� L = {aa, bb} 
� L3 = {aaaaaa, aaaabb, aabbaa, aabbbb, 

bbbbbb, bbbbaa, bbaabb, bbaaaa} 
� L0 = {ε} 



}  The set of strings that can be obtained by 
concatenating any number of elements of a 
language L is called the Kleene Star, L* 

 

✔ Note that since L* contains L0, ε is always an 
element of L*  

 

...432

0

10* LLLLLLL
i

i ∪∪∪∪==
∞

=




}  The set of strings that can be obtained by 
concatenating one or more elements of a 
language L is denoted L+ 
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Note that  L* = L+  ∪  {ε} 



}  How do we specify languages? 
◦  If language is finite, we can list all of its strings. 
�  L = {a, aa, aba, aca} 
◦  Using basic language operations 
�  L = {aa, ab}* ∪ {b}{bb}* 

◦  Descriptive: 
�  L = {w | na(w) = nb(w)} 
 
 

}  We can also specify languages recursively… 



}  Definition is given in terms of itself 
}  Example:  factorial 
◦  0! = 1 
◦  n! = n * (n-1)! 
 
◦  4! = 4 * 3! 
◦      = 4 * (3 * 2!) 
◦      = 4 * (3 * (2 * 1!)) 
◦      = 4 * (3 * (2 * (1 * 0!))) 
◦      = 4 * (3 * (2 * (1 * 1))) 
◦      = 24 



}  Languages can also be described by using a 
recursive definition 

 
1.  Initial elements are added to the set (BASIS) 

2.  Additional elements are added to the set by 
applying a rule(s) to the elements already in 
the set  (INDUCTION) 

3.  Complete language is obtained by applying 
step 2 repeatedly  



}  Example:  recursive definition of Σ* 

1)  ε ∈ Σ* 

2)  For all w ∈ Σ*  and all a ∈ Σ, wa ∈ Σ*  

3)  Nothing else is in Σ* unless it can be obtained by  a 
finite number of applications of rules 1 and 2 



}  Example:  recursive definition of Σ* 
◦  Suppose  Σ = {a,b} 
◦  Consider applications of the recursive definition 

 
1. i=0: Σ* = {ε} 
2. i=1: Σ* = {ε, a, b} 
3. i=2: Σ* = {ε, a, b, aa, ab, ba, bb} 
4. i=3: Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba,  

  abb, baa, bab, bba, bbb} 
5. … 



}  Example:  recursive definition of L* (Kleene 
star of language L) 

 
1.  ε ∈ L* 

2.  For all w ∈ L*  and all x ∈ L, wx ∈ L*  

3.  Nothing else is in L* unless it can be obtained by a 
finite number of applications of rules 1 and 2 



}  Example:  recursive definition of L* 
◦  Suppose  L = {aa,abba} 
◦  Consider applications of the recursive definition 

 
1. i=0: L* = {ε} 
2. i=1: L* = {ε, aa, abba} 
3. i=2: L* = {ε, aa, abba, aaaa, aaabba, abbaaa,   

 abbaabba} 
4. … 



}  Another Example:  palindromes over Σ 
◦  Palindromes read the same way forward and 

backward 
 
◦  First half of the string is a mirror image of the 

second half 
 
◦  E.g. a, b, aa, aba, babbab, bbabb, ε 



}  Another Example:  palindromes over Σ 
 

1.  ε ∈ pal 

2.  For all a ∈ Σ, a ∈ pal 

3.  For all a ∈ Σ and all w ∈ pal, awa ∈ pal 

4.  Nothing else is in pal unless it can be obtained by 
a finite number of applications of rules 1-3 

 
 
 



}  Another Example:  palindromes over Σ 
◦  Suppose Σ = {a,b} 
◦  Consider applications of the recursive definition 

 
1. i=0: pal = {ε, a, b} 
2. i=1: pal = {ε, a, b, aa, bb, aaa, bab, aba, bbb} 
3. i=2: pal = {ε, a, b, aa, bb, aaa, bab, aba,      

bbb,aaaa, baab, abba, bbbb, aaaaa,  baaab, ababa, 
bbabb, aabaa, babab, abbba, bbbbb} 

4.   ... 


