CSCI-661: FOUNDATIONS OF COMPUTER SCIENCE THEORY

Instructor: Stanisław Radziszowski

Based on slides from Aaron Deever and Monika Polak

Overview of the Course

Foundations of CS Theory

- formalization of computation
- various models of computation (increasing difficulty/power)
- what can / cannot be done ?

Why a Theory Course?

- relevant to practice
 - grammars for programming languages
 - finite automata & regular expressions for pattern matching of strings
 - NP-completeness to determine required time complexity (e.g. for cryptography)

 problem solving skills independent of current technology (specific programming languages, etc.), ability to express ideas clearly, succinctly, and correctly

Introduction

Automata Theory

mathematical models of computation

Computability Theory

• what can be computed ?

Complexity Theory

• which problems are computationally hard / easy ?

Discrete Math Review

- Sets
- Relations
- Proofs

A <u>set</u> is a collection of elements.

Finite set – has finite number of elements

• A = { 1, 3, 5, 6, 9 }

- Infinite Set has infinite number of elements
 - B = { x | x is an odd integer }
- Null (Empty) set has no elements.
 - Ø

Describing a set

- Enumeration list all elements
 - A = { 1, 3, 5, 6, 9 }
- Describe set based on one or more properties of the members
 - $B = \{ x \mid x \text{ is an odd integer and } x > 10 \}$
 - The notation B = { x | P(x) } is interpreted as "B is the set of all x such that P(x) is true"

- Membership
 - If an element x is a member of a set A, we write:
 - x ∈ A.
 - If an element x is not a member of a set A, we write:
 - $x \notin A$
- Subsets
 - A is a subset of B if all elements of A are also in B.
 - $A \subseteq B$ if $x \in A$ implies $x \in B$
 - -A = B is the same as saying $A \subseteq B$ and $B \subseteq A$.
- Power Set
 - Set of all subsets of A
 - Sometimes written as P(A)

- Cardinality
 - For set A, |A| represents the cardinality of the set
 - |A| = the number of elements in the set

• If
$$|B| = 0$$
, then $B = \emptyset$

- $\circ \ If |A| = N$
 - How many elements in P(A)?
 - 2^N

- Union
 - $A \cup B =$ set consisting of all elements in either A or B or both.
- Intersection
 - $\circ~A\cap B=$ set of elements that are in both A and B
 - If $A \cap B = \emptyset$, A and B are disjoint.
- Difference
 - A B = set of all elements of A that are not elements of B
- Complement (with respect to a universal set U)
 - A' = All elements in U that are not in A
 - U A

- A = { 1, 3, 5, 6, 9 }
 B = { x | x is an odd integer }
- A ∪ B = { x | x = 6 or x is an odd integer}
 A ∩ B = { 1, 3, 5, 9 }
- ► A B = { 6 }
- B' = { $x \mid x \text{ is an even integer }$
 - With respect to the universal set of integers.

- What's another way to write A B?
 A ∩ B'
- Suppose A, B are finite sets.
 - \circ How can $|A \cup B|$ be written in terms of
 - |A|, |B|, and $|A \cap B|$?
 - $|A \cup B| = |A| + |B| |A \cap B|$
 - What must be true if $|A \cup B| = |A| + |B|$?
 - A and B are disjoint
 - $\mathbf{A} \cap \mathbf{B} = \emptyset$

(Some) Laws Involving Sets

Commutative

- $\circ \mathsf{A} \cup \mathsf{B} = \mathsf{B} \cup \mathsf{A}$
- $\circ \mathsf{A} \cap \mathsf{B} = \mathsf{B} \cap \mathsf{A}$

Associative

- $\circ \mathsf{A} \cup (\mathsf{B} \cup \mathsf{C}) = (\mathsf{A} \cup \mathsf{B}) \cup \mathsf{C}$
- $\circ A \cap (B \cap C) = (A \cap B) \cap C$

Distributive

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

(Some) Laws Involving Sets

DeMorgan

- (A \cup B)' = A' \cap B'
- (A \cap B)' = A' \cup B'

Other

- (A')' = A
- $A \cap A' = \emptyset$
- $A \cup A' = U$ (universal set)
- $\mathsf{A} \cup \emptyset = \mathsf{A}$
- $\mathsf{A} \cap \emptyset = \emptyset$

Cartestan Product of Sets

- A x B = set of <u>ordered pairs</u> (a,b) such that • $a \in A$ and $b \in B$.
- A x B x C = set of ordered triplets (a, b, c) such that
 - $a \in A$ and $b \in B$ and $c \in C$
- In general: A₁ x A₂ x ... x A_n = the set of all n-tuples (a₁, a₂, ..., a_n) such that
 a_i ∈ A_i for all i.

- Means to relate or associate a member of one set with a member of another
 - Relation from A to B is simply a subset of A x B
 - If $a \in A$ is related to $b \in B$ then $(a, b) \in R$
 - Can also be written aRb
 - Or R(a) contains b
 - Could involve more than 2 sets; we'll stick with two
 - Binary relation from A to B

Binary Relation Expressed as a Function

- Binary relation from A to B is simply a subset of A x B
 - $\circ\,$ If $a\in A$ is related to $b\in B$ then (a, b) $\in R$
- Convert to a function:
 - A x B as input (domain)
 - {TRUE, FALSE} as output (range)
 - ∘ $f : A \times B \rightarrow \{TRUE, FALSE\}$
 - f(a,b) = TRUE is equivalent to saying aRb

Binary Relation on A

- Sometimes we are interested in how members of a set are related to other members of the same set
 - Instead of referring to a binary relation from A to A
 - We'll refer to a binary relation on A

Equivalence Relations

If R is a binary relation on A (i.e. R is a subset of A x A), R is an <u>equivalence relation</u> if:

- R is <u>reflexive</u>
 - for all a in A, (a,a) $\in R$
- R is symmetric
 - for all a, b in A, if $(a,b) \in R$ then $(b,a) \in R$
- R is <u>transitive</u>
 - for all a, b, c in A, if (a,b) \in R and (b,c) \in R then (a,c) \in R

Example Binary Relations on A

- Are any of these equivalence relations on the set A of integers?
- Which properties hold / break?
 - aRb if a < b
 - aRb if $a \leq b$
 - aRb if a=b
 - aRb if |a b| < 5
 - aRb if |a| = |b|
 - aRb if a = |b|
 - aRb if a and b are relatively prime

Re / Sy / Tr
Re / Sy / Tr

- Re / Sy / Tr
- **Re** / **Sy** / **Tr**
- Re / Sy / Tr
- Re / Sy / Tr
- Re / Sy / Tr

THANKS FOR YOUR ATTENTION!

