CSCI-762 Assignment #5
Thomas Bottom Due 19 March 2020

Exploring elliptic curves.
For edition 4 of the textbook, use chapter 7 (instead of 6), same exercise numbers, pages 306/307.

. Solve exercise 6.13 page 278. Note that the answer in (¢) must be a divisor of (a).
. Solve exercise 6.14 page 279.
. Solve exercise 6.15 page 279.
. Solve exercise 6.16 page 279.
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. Proving associativity of point addition on elliptic curves is quite complicated. In this exercise you will do
just a special case of it. Suppose that points P=(pl,p2) and Q=(ql,q2), pl not equal to ql, are on an
elliptic curve E (either real or modular). It is obvious that ((-P) + P) + Q = Q.

Prove that (-P) + (P + Q) = Q by
using geometric reasoning on the plane
using only algebraic transformations defining point addition

1. Exercise 7.13

The source code used to solve this question can be found in Appendix A.

(a) Determine the number of points on €.
There are 72 points on £.
(b) Show that & is not a cyclic group.
As can be seen in the table below, none of the points on the curve is a generator.

Point  Order Point  Order Point  Order
0] 1 (35, 14) 12 (4, 5) 36

(27, 0) 2 (35, 57) 12 (4, 66) 36
(53, 0) 2 (52, 26) 12 (13, 26) 36
(62, 0) 2 (52, 45) 12 (13, 45) 36
(20, 5) 3 (66, 18) 12 (15, 9) 36
(20, 66) 3 (66, 53) 12 (15, 62) 36
(5, 4) 4 (1, 32) 18 (21, 3) 36
(5, 67) 4 (1, 39) 18 (21, 68) 36
(49, 24) 4 (6, 26) 18 (23, 19) 36
(49, 47) 4 (6, 45) 18 (23, 52) 36
(2, 31) 6 (12, 8) 18 (33, 1) 36
(2, 40) 6 (12, 63) 18 (33, 70) 36
(19, 27) 6 (22, 30) 18 (34, 23) 36
(19, 44) 6 (22, 41) 18 (34, 48) 36
(39, 32) 6 (25, 22) 18 (37, 33) 36
(39, 39) 6 (25, 49) 18 (37, 38) 36
(31, 32) 9 (58, 27) 18 (41, 7) 36
(31, 39) 9 (58, 44) 18 (41, 64) 36
(36, 12) 9 (61, 15) 18 (43, 22) 36
(36, 59) 9 (61, 56) 18 (43, 49) 36
(63, 17) 9 (65, 27) 18 (47, 5) 36
(63, 54) 9 (65, 44) 18 (47, 66) 36
(3, 22) 12 (69, 35) 18 (48, 11) 36
(3, 49) 12 (69, 36) 18 (48, 60) 36

(¢) What is the maximum order of an element in £7 Find an element having this order.
The maximum order is 36. An example element with this order is the point (4,5), as are all points
in the rightmost column of the table above.



2. Exercise 6.14

Suppose that p > 3 is an odd prime, and a,b € Z,. Further, suppose that the equation z* + az + b = 0
mod p has three distinct roots in Z,. Prove that the corresponding elliptic curve group (£, +) is not cyclic.

HINT Show that the points of order two generate a subgroup of (£, +) that is isomorphic to Zs X Zs.

The only points P of order 2 are those of the form 2P = O, which are exclusively those points whose y
coordinate equals 0. Take these three roots of the curve to be pi, p2, p3 together with the identity element
O as a subgroup of (£,+). This subgroup is isomorphic to Zy X Zs, which is not cyclic, so Z,, containing
this subgroup cannot be cyclic.

3. Exercise 6.15

Consider an elliptic curve £ described by the formula y? = 3 + az + b mod p, where 4a> + 27b% # 0
mod p and p > 3 is prime.

(a) Tt is clear that a point P = (x1,y1) € £ has order 3 iff 2P = —P. Use this fact to prove that, if
P = (z1,y1) € € has order 3, then
3z} + 6ax? + 12210 —a? =0 mod p

_ 323 +a
2y1
373+ a,
T =(———)" -2z 1=
1= 2 ) 1 1 2
373+ a,
3z =
1= ( o )
9 4 6 2 2
3y, = 2%+ bar” + a7 do square
4y?
1221y} = 927 + 6ax® + a®
122* + 12a2? + 1202 = 927 + 6az? + a® substitute £ for y?

32} 4 6ax? +12bx; —a®> =0 mod p

(b) Conclude from equation (6.7) that there are at most 8 points of order 3 on the elliptic curve £.
The four roots of the quartic polynomial (6.7) form the x coordinate of 8 points on the
curve of the form (x,y) and (x,~y).

(c) Using equation (6.7) determine all points of order 3 on the elliptic curve y? = 23 + 342 mod 73

The four roots of 3x7 + 20427 + —1156 =0 mod 73 are 1, 2, 71, 72
Solve y2 = x2 + 34z mod 73 with these four roots as x:

z=1, y>=35 mod73y =20,53
r=2, y’=3 mod 73y = 21,52
z=71, y>=70 mod 73y =17,56
r=72, 3*=38 modT76y =29,44

The 8 points of order 3 are (1,20), (1,53), (2,21), (2,52), (71,16), (71,56), (72,29), and
(72,44).



4. Exercise 6.16
Suppose that &£ is an elliptic curve defined over Z,, where p > 3 is prime. Suppose that #& is prime,
Peé& and P#O.

(a) Prove that the discrete logarithm log,(-P) = #& — 1.
If #& is prime, then £ is cyclic. log,(-P) must be #&£ — 1 because P+-P = O = EP.

(b) Describe how to compute #& in time O(p'/4) by using Hasse’s bound on #&, together with a modi-
fication of SHANKS’ ALGORITHM. Give a pseudocode description of the algorithm.

Hasse’s bound asserts that ¢ + 1 — 2,/g < #& < ¢+ 1+ 2,/q (where ¢ = p" for p prime).
Modified Shanks:

/] We do not know the order of the group, so set m to the square root of the upper bound

m=[\/q+1+2/7q]

for(j = 1 to m)
compute jP and store in a list L1

Sort the ordered pairs of L1, (j, jP) by the second coordinate

for(i =1 to m)
compute (-P) + im(-P) and store in a list L2

Sort the ordered pairs of L2, (i, (-P) + im(-P)) by the second coordinate
Find a pair (j, jP) and (i, (-P) + im(-P)) having identical second coordinates

#E=im+j+1



5. Proving associativity of point addition on elliptic curves is quite complicated. In this exercise you will do
just a special case of it. Suppose that points P=(p1,p2) and Q=(ql,q2), pl not equal to ql, are on an
elliptic curve E (either real or modular). It is obvious that ((-P) + P) + Q = Q.

Prove that (-P) + (P + Q) = Q by
using geometric reasoning on the plane

I

N

using only algebraic transformations defining point addition

On page 293 of the textbook (4th Edition) the subtraction operation for points on an elliptic curve is defined
as Q - P = Q + (-P). Using this definition we can subtract -P from both sides of (—P) + (P + Q) = Q
yielding:

(P+Q)=Q—(-P) > P+Q=Q+P

We can immediately conclude that this relationship must hold for the case where P = @) so the below proof
is only concerned with showing that (—P) + (P + Q) = Q for the case when P # Q.

We begin with the definitions of the coordinates P, -P, @, and apply the standard formulae for point
addition.

P = (21,y1)
—P = (z1,-y1)
Q = (72,y2)
P+ Q= (v3,y3)
T3 = )\% — X1 — To
ys = Az —x3) — %1
A = Y2 — 1
T2 — T1

(=P)+ (P + Q) = (24,94)

174:)\3—1‘1—1‘3

Sz —(—y1)  yitys oy (A(wr—a3) —y1) | w1 — a3
Ay = = = =\ =\
T3 — X1 T3 — 1 T3 — Iy T3 — Iy
.T4:(—Al)Z—I‘l—I3:>\%—I1—(/\%—{E1—I2):SC2
X1 — T2

Yo = Aa(x1 —xa) + 1 = —( M) (@1 —22) + 1 = —(y2 — ¥1) +y1=—(y2—y1)(—1)+y1 = y2

Ty =2, Yya=y2 —~ (—P)+(P+Q)=Q

T2 — T



A Source Code

# CSCI-762 Assignment &
# Due 2020—03—19
# Thomas Bottom

# Global modulus used by the ecc module

# default 11, set wvia ecc.modulus = ...

# This is convenient for performing arithmetic with the Points defined
# below because they may be constructed with only their coordinates and
# mo additional parameters need to be stored to use operator owverrides
modulus = 11

a =1

b=26

# x"n mod m
def modpow(x, n, m):
if n < 0: raise ValueError(”n must be >= 07)

if n =— 0: return 1
y =1
while n > 1:
if n%2 =— 0:
x = (x*x) % m
n=mn/ 2
else:

y = (xry) %om
n=n 1
return (xxy) % m

# assume modulus is prime, find inverse by expomentiation
def find_inverse(x, modulus):
return modpow (x, modulus—2, modulus)

# returns True iff a"((p—1)/2) = 1 mod p, False otherwise
def quadratic_residue(a, p):
return 1 =— modpow(a, (p—1)/2, p)

class Point:
def __init__(self, x, y, infinity=False):
self .x = x
self .y =y
self . infinity=infinity

def __eq-_(self, other):
return (self.x = other.x and self.y = other.y) \
or (self.infinity and other.infinity)

def __1t__(self, other):

if self = other: return False
if self.x != other.x: return self.x < other.x
else: return self.y < other.y



# Find all points on the globally defined curve and return them in a

def __add__(self, other):
# handle identity case
if self.infinity:
return other
elif other.infinity:
return self

# infinity case

if self.x = other.x and self.y = (—other.y % modulus):

return Point (0,0, True) # point at infinity
# calculate slope

elif self = other:

slope = (((3*(self.x*%2))+a) x find_inverse(2*self.y, modulus)) % modulus
else:

slope = ((other.y—self.y) * find_inverse (other.x—self.x, modulus)) % modulus

# calculate (z3,y3)
x3 = ((slopexx2)—self.x—other.x) % modulus
y3 = (slopex(self.x—x3)—self.y) % modulus
return Point (x3,y3)

def __str__(self):
if self.infinity:
return 70"
else:
return " (%d, %d)” % (self.x, self.y)

def find_points ():

assert (3 = modulus % 4)
points = [Point (0,0, True)] # point at infinity
for x in range(modulus):
y2 = (modpow(x, 3, modulus) + (a*x) + b) % modulus
if quadratic_residue(y2, modulus):
y = modpow(y2, ((modulus+1)/4), modulus)
assert (modpow(y, 2, modulus) = y2)
assert (modpow(—y%modulus, 2, modulus) = y2)
points .append(Point (x, y))
points.append (Point (x, —y%modulus))
elif 0 = y2:
points .append (Point (x,0))
return points

# Find subgroup generated wusing point addition

def

def

find_subgroup (point ):
subgroup = [Point (0,0, True)] # start with [O]
alpha = point
while not alpha.infinity:
subgroup . append (alpha)
alpha = alpha 4+ point
return subgroup

find_order (point):
return len (find_subgroup (point))

list



if __name_._. = 7 __main__":
# 7.18 (a) find all points on y°2 = z°8 + x + 28 mod 71

a =1
b = 28
modulus = 71

points = find_points ()
print ”There are %d points on the curve” % len(points)

# Do a little sanity check
for p in points:
sg = find_subgroup (p)
for s in sg: assert(s in points)

# 7.13 (b) show this is not a cyclic group
print ”Point & Order\\\\”
orders = []
for p in points:
order = find_order (p)
orders.append ((p, order))

orders.sort (key = lambda t : (t[1], t[0].x, t[0].y))
for o in orders:

print 7{} & {} \\\\”.format(o[0], o[1])



