CSCI-762 Assignment #4
Thomas Bottom Due 3 March 2020

Solve parts 1 and 2 by hand, use computer help to solve 3 and 4. In all exercises explain what you did and
show the details of your work. Attach source code as applicable.

1. The polynomial z* + x + 1 is irreducible in Zs[z]. Compute z'®> mod z* +z + 1 in Z3[z], i.e. in the Galois
field GF(2%). Use two approaches: standard square-and-multiply for exponent 15, and for the exponent
written as (16 - 1).

2. Find all irreducible polynomials in Zs[x] of degree 5. You can assume that the polynomial 22 + x + 1 is
the only irreducible binary quadratic (you do not need to show that).

3. Solve exercise 6.12 pages 277/278 (7.12 pages 305/306). You can use this representation of the Galois field
GF(27)

4. Let p = 131. First show that (z? + 1) is irreducible in Z,[z] - this can be done by hand using the Euler
criterion for quadratic residuosity. Next, represent GF(p?) by polynomials modulo (22 + 1). Use naive
algorithm to find the number of elements of each order in GF(p?), and list 10 smallest monic primitive
(generators with coefficient 1 in the highest degree term) elements. Illustrate the computation of discrete
logarithm of (x+101) with base equal to the smallest such generator using Shanks’ algorithm.

Compute z'® mod 2* + 2 + 1 in Zs[x]

operation power result mod z* +z+1
start 1 T x
square 2 x? x2
*T 3 x> x>
square 6 28 3 + 22
*T 7 ot 4+ 2® P+ x+1
square 14 20 +a22+1 2341
*T 15 4o 1

Compute =1 mod z* + x + 1 in Z[z]

A ;516 x271 mod 2t +x +1
r =22 2=2"=2%+1in GF(2%)

operation power result mod z*+x+1

start 1 T T
square 2 22 22
square 4 z? z+1
square 8 2 +1 2241
square 16 41 2

x(x34+1) 15 azt4+z 1



2. Find all irreducible polynomials in Zs[x] of degree 5. You can assume that the polynomial 22 + x + 1 is
the only irreducible binary quadratic (you do not need to show that).

Start with the following irreducible linear and given quadratic factors:
x z+1 2 +z+1

Check polynomials for irreducibility. Immediately rule out any polynomial not ending in + 1 because it is
divisible by x. Polynomials of degree 3 are irreducible if they do not have linear factors. Polynomials up
to degree 5 must have a factor of degree 1 or 2 (since any factor of degree 3 or 4 would only produce a
polynomial of degree 5 when multiplied by a factor of degree 2 or 1 respectively), so it suffices to check for
linear and quadratic factors for these polynomials.

Irreducible polynomials have been marked in bold and begin with an asterisk (*).

23+ 1 (x+1)(@?+2+1) *z¥4+224+1 no linear or quadratic factors
3 x4 1 no linear factors, degree 3 ~ 2° 4+ 22 +x+1 has linear factor; f(1) = 0
3 4?2 41 no linear factors, degree 3 *5 3 4+ 1 no linear or quadratic factors
P+l +r+1 has linear factor; f(1) = 0 P+ +r+1 has linear factor; f(1) = 0
| (x+ D)@ +22+2+1) 2P +a3+22+1 has linear factor; f(1) = 0
ket 4+ x+ 1 no linear or quadratic factors *2% + 23 4+ 22 + 2 4 1 no linear or quad factors
42?41 (22 +2+1)2 2o+t 1 (2 +z+ D)@ +z+1)
4l +a+1 has linear factor; f(1) =0 25 +az*+2+1 has linear factor; f(1) = 0
*rd 423 41 no linear or quadratic factors 4t +a2+1 has linear factor; f(1) =0
4+ +r+1 has linear factor; f(1) = 0 *25 + 24 4+ 22 4+ x + 1 no linear or quad factors

zt+ 2%+ 1 has linear factor; f(1) = 0
*x4 + 23 4+ 22 + 2 4+ 1 no linear or quad factors
x°+1 has linear factor; f(1) = 0
P +r+1 (@ + 22+ (2> +2+1)

o+t + a3+ 1 has linear factor; f(1) = 0
*2% + % 4+ 23 + x 4 1 no linear or quad factors
*x5 + x4 + 23 4+ 22 + 1no linear or quad factors
25 + 2% + 23 + 2% + 2 + 1 has linear factor; f(1) = 0

. We give an example of the ElGamal Cryptosystem implemented in Fss. The polynomial 22 + 222 + 1 is
irreducible over Z3[z] and hence Zs[z]/(z® + 222 + 1) is the field F3s. We can associate the 26 letters of
the alphabet with the 26 nonzero field elements, and thus encrypt ordinary text in a convenient way. We
will use a lexicographic ordering of the (nonzero) polynomials to set up the correspondence.

Suppose Bob used @ = z and @ = 11 in an ElGamal Cryptosystem; then 8 = x 4+ 2. Show how Bob will
decrypt the following string of ciphertext:
(K H) (P,X)(NK) (H,R)(T,F)(V,Y) (E,H)(F,A)(T,W)(J,D)(U,J)

A solution to perform this decryption was implemented in C++ and can be found in Appendix A.

1

The decryption is performed as dy(y1,y2) = y2(y%)~! mod x® + 222 + 1 using the provided lookup table

for multiplication in GF(27).
The decrypted text is GALOISFIELD.



4. Let p = 131. First show that (2% + 1) is irreducible in Z,[z] - this can be done by hand using the Euler
criterion for quadratic residuosity. Next, represent GF(p?) by polynomials modulo (2% + 1). Use naive
algorithm to find the number of elements of each order in GF(p?), and list 10 smallest monic primitive
(generators with coefficient 1 in the highest degree term) elements. Illustrate the computation of discrete
logarithm of (x+101) with base equal to the smallest such generator using Shanks’ algorithm.

Proof that z2 + 1 is irreducible in Z;3;[z]
22+1=0 mod 131
22 =130 mod 131
130'39/2 = 130 mod 131
130 is not a quadratic residue mod 131

For this question I implemented basic polynomial multiplication, subtraction, exponentiation, and modular
reduction in Python. I chose Python for this question because of the convenient syntax when working with
list representations of polynomials, and the fact that the Python modulus operator conveniently returns
the smallest positive congruence (as opposed to C which may return a negative value in some cases).

The list representation of polynomials is such that the each entry in a list represents the coefficient of the
power at that index, e.g. [1,0,1] would represent 1% 20 + 0% 2! + 1 x 22 = 22 + 1. This implementation is
not the most efficient possible, but the code is both simple and intuitive.

How many elements of each order in GF(1312)?

order numPolynomials order numPolynomials order numPolynomials
3 2 104 48 572 240
6 2 110 40 660 160
8 4 120 32 715 480
11 10 132 40 780 192
12 4 143 120 858 240
15 8 156 48 1144 480
22 10 165 80 1320 320
24 8 195 96 1430 480
30 8 220 80 1560 384
33 20 264 80 1716 480
39 24 286 120 2145 960
40 16 312 96 2860 960
44 20 330 80 3432 960
55 40 390 96 4290 960
60 16 429 240 5720 1920
66 20 440 160 8580 1920
78 24 520 192 17160 3840
88 40
List the 10 smallest monic primitive polynomial elements:
x+3 T +5 T+ 7
z+9 4+ 11 412
x+ 14 x+15 r+ 23
z 4+ 26



INlustrate the computation of discrete logarithm of (x+101) with base equal to the smallest
such generator using Shanks’ algorithm.

The smallest generator is x + 3.

Compute Log,13(x + 101) using Shanks’ Algorithm.
G = 21312[I]7 n = 17160, a = $+37 B =x + 101
m = 131 ,
al=al" 2= 2=132+92
I used the code from Appendix B interactively to run Shanks’ Algorithm by hand.

>>> import q4

>>> L1 = []

>>> L2 = []

>>> alpha = [3,1] #x + 3
>>> beta = [101, 1] # =z + 101
>>> modulus = [1,0,1] # 2 + 1

>>> alpha_inverse = q4.polyPow(alpha, (131%%2)—2, modulus)
>>> for j in range(l,m):
L1.append((j,q4.polyPow(alpha, m«j, modulus)))

>>> L1.sort (key = lambda tuple : tuple[1])

>>> for i in range(1l,m):
acc = q4.polyPow(alpha_inverse, i, modulus)
acc = q4.polyMod (q4.polyMult (acc, beta), modulus)
L2.append ((i,acc))

>>> L2.sort (key = lambda tuple : tuple[1])
>>> for j,yl in LI1:
for i,y2 in L2:
if q4.polyEquals(yl,y2):
print ((m*j) + 1) % 17160
break

3517
Verify the result

>>> q4.polyPow (alpha, 3517, modulus)
(101, 1]

Loggzys(x + 101) = 3517



A Question 3 Source Code

/// @author Thomas Bottom

/// CSCI-762 Assignment

4

#include <cassert> // for
#include <cctype> // for
#include <cstring> // for
#include <cstdio> // for

const int gf27MultTable [] = {

// 0 1 2 3 4 5
Jxo0: %/ o, o0, 0, O, 0, O,
Jx o 1: ox/ o, 1, 2, 3, 4, 5,
Jxo 2: %/ o, 2, 1, 6, 8, 7,
Jx o 8 x/ o, 3, 6, 9, 12, 15,
Uxo 4o ox/ 0o, 4, 8, 12, 16, 11,
Y% 5: %/ 0, 5, 7, 15, 11, 13,
Jx o 6 x/ o, 6, 3, 18, 24, 21,
R Ty o, 7, 5, 21, 19, 26,
Yx o 8: x/ 0o, 8, 4, 24, 23, 19,
Yx o 9: x/ o, 9, 18, 11, 20, 2,
Jx 10: %/ 0, 10, 20, 14, 21, 4,
Yx 11: %/ 0, 11, 19, 17, 25, 6
Yx 12: %/ 0, 12, 24, 20, 5, 17
/* 18: x/ o, 13, 26, 23, 6, 10,
Jx 14: =/ 0, 14, 25, 26, 1, 12,
Ux 15: x/ 0, 15, 21, 2, 17, 23,
V% 16: %/ 0, 16, 23 5, 9, 25,
Yx 17: x/ 0, 17, 22 8, 13, 18,
Yx 18: %/ 0, 18 9, 19, 10, 1,
Yx 19: %/ 0, 19, 11, 22, 14, 3,
Jx 20: %/ 0, 20, 10, 25, 15, 8,
Jx o 21: %/ 0, 21, 15 1, 22, 16,
Jx 22: %/ 0, 22, 17 4, 26, 9
Jx 28: %/ 0, 23, 16, 7, 18, 14
/* 24: x/ 0, 24, 12, 10, 7T, 22,
Jx 25: x/ 0, 25, 14, 13, 2, 24,
V% 26: %/ 0, 26, 13, 16, 3, 20,
}

<tdb4197Qcs. rit.edu>

sanity checks

tolower

strlen

printf
7 8 9 10 11 12 13 14 15 16 17
o, 0, 0, O 0, o0 o, 0, 0, 0, 0
7, 8, 9, 10 11, 12 13, 14, 15 16, 17
5, 4, 18, 20, 19, 24, 26, 25, 21, 23, 22
21, 24, 11, 14, 17, 20, 23, 26, 2, 5, 8
19, 23, 20, 21, 25, 5, 6, 1, 17, 9, 13

11, 16, 10, 15, 14, 7, 3, 2, 22, 18, 26,

5,
12, 1, 23, 9, 7, 6, 22, 11, 10, 8, 21
10, 6, 5, 19, 15, 9 8, 22, 25, 12, 2

/// @return integer representation of c¢ in GF(27)
inline int gf27CharTolnt(const char c¢) {

int lc = tolower(c);

assert (le >= 'a' & lc <= 'z");

return lc — 96;

}

/// @return character representation of z in GF(27)
inline char gf27IntToChar(int x) {
assert (x > 0 && x < 27);

return (char)(x+96);
}

/// @return index of element at specified row and column in table of given width
inline int rowMajorIndex (int row, int col, int width) {
assert (row<width); assert (col<width);
return (widthxrow)+col;

}

/// @Qreturn x * y in GF(27)

inline int gf27Mult(int x, int y) {
assert (x<27); assert (y<27);
// result is at table index in row major order
return gf27MultTable [rowMajorIndex (x,y,27)];



/// @Qreturn x"e in GF(27)
int gf27Pow (int x, int e) {
assert (x<27); assert (e>=0);
if(0 = e) return 1;
int y = 1;
while(e > 1) {
if (0 = e%2) {
x = gf27Mult (x,x);
e /= 2
} else {
y = gf27Mult (x,y);
x = gf27Mult (x,x);
e = (e—1)/2;
}
}
return gf27Mult (x,y);

}

/// @return the multiplicative inverse of z in GF(27)
inline int gf27FindInverse(int x) {
assert (x<27);
for(int i = 1; i < 27; ++i) {
if(1 = gf27Mult(x,1)) return i;
}

// control should mever reach here
assert (false);
return —1;

/// @Qreturn d_k(yl,y2) = y2(yl a) -1

int gf27Decrypt (int yl, int y2, int a) {
int acc = gf27Pow(yl, a); // (y1~a)
acc = gf27FindInverse(acc); // (y1°1)"—1
return gf27Mult (y2, acc);

int main(int argc, char xx argv) {
// Decrypt the following ciphertexts
// (K,H)(P,X)(N,K)(H,R)(T,F)(V,Y)(E,H)(F,A)(T,W)(J,D)(U,J)

const charx ct = ”"khpxnkhrtfvyehfatwjduj”;
const int bound = strlen (ct);
const int a = 11;

for (int i = 0; i < bound; i+=2) {
int yl = gf27CharTolnt(ct[i]);
int y2 = gf27CharTolnt(ct[i+1]);
int pti gf27Decrypt (yl, y2, a);
char pt = gf27IntToChar (pti);
printf ("%c”, pt);

printf(”\n”);
return O0;



B Question 4 Source Code

# Author: Thomas Bottom <tdb4197Qcs. rit.edu>
# CSCI-762 Assignment /4

# Polynomials are represented as lists where the index of the coefficient
# is the power of x is represents
#e.g. [1,2,3] represents 1xx"0 + 2+x"1 + 8 #x"°2

base_modulus = 131
field_extension = 2
field_irreducible = [1,0,1] # z°2 + 1
# remove trailing zeros from the polynomial representation
def stripPoly(p):

for i in xrange(len(p) — 1, -1, —1):

if p[i] != 0:
break
del p[i 4+ 1:]
return p

# get the degree of the polynomial
def polyDegree(p):

i =1len(p) — 1

while i >= 0:

if p[i] != 0: break
i—=1
return i

# Perform a polynomial multiplication with coefficients reduced by the base_modulus
def polyMult (pl, p2):
result = []
for i in range(len(pl)):
for j in range(len(p2)):
power = i+j
coefficient = pl[i] = p2[j]
# FEnsure list is large enough to contain result
if len(result) <= power: result.extend ([0] % (power — len(result) + 1))
result [power] = (result [power] + coefficient) % base_modulus
return stripPoly (result)

# return polynomial p mod m (m must be monic)
def polyMod (p, m):

dp = polyDegree(p) # degree of p

dm = polyDegree(m) # degree of m

while dp >= dm: # do long division
i = dp—dm # degree of quotient q
q = [0]x(i+1) # create polynomial q such that
qli] = p[dp] # p—(mq) reduces degree of p by 1
p = polySub(p, polyMult(m, q))
dp =1

return stripPoly (p)



# Perform polynomial subtraction modulo the coefficient base modulus
def polySub(pl, p2):
if len(pl) < len(p2): pl.extend ([0] * (len(p2)—len(pl)))
result = []
for i in range(len(p2)):
result .append ((pl[i] — p2[i]) % base_modulus)
return stripPoly (result)

# returns true iff polynomials a and b are equal
def polyEquals(a, b):

a = stripPoly (a)

b = stripPoly (b)

return a = b

# return p_e mod m
def polyPow(p, e, m):
y = [1]
while e > 1: # square and multiply
if 0 =1¢ % 2:
p = polyMod (polyMult (p,p), m)

e==¢ [/ 2

else:
y = polyMod (polyMult(p, y), m)
e =¢e¢ — 1

return polyMod (polyMult(p,y), m)

if __name._. = 7 __main__":
orders = {}
for a in range(1l,base modulus):
for b in range(1l,base_modulus):
# test all polynomials of the form (ax + b), 0 < a < 131
poly = [b, a]
counter = 1 # counts the order of poly
accumulator = poly
while False = polyEquals (accumulator, [1]):
counter 4= 1
# accumulator = accumulator "counter
accumulator = polyMod (polyMult (accumulator ,poly ), field_irreducible)
if counter in orders:
orders [counter ].append(poly)
else:
orders [counter] = [poly]

# print orders in latex table format

orderlist = []

for k,v in orders.iteritems (): orderlist.append( (k, len(v)))
orderlist.sort (key = lambda t: t[0])

print (”order & numPolynomials \\”)

for t in orderlist: print("%d & %d \\\\” % t)

print "\nSmallest 10 Monic Primitives”
for i in range(10): print orders[17160][i]



