
478 Cryptography: Theory and Practice

S between Il and V. Then W participates in two additional sessions Sl and $2
with V and U, respectively. In these two sessions, W transmits values su and sv
that are copied from S. (Of course, W does not know the exponents ru and rv
corresponding to su and Sv, respectively.) Then, after the sessions Sl and 82 have
concluded, W requests the keys for these two sessions, which is permitted in a
known session key attack.

The session keys K, Kl, and 1<2 for the sessions S, 81, and S2 (respectively) are
as follows:

K aruav+rvau

ruav+r'vaw

uaw+rvau

Given Kl and K2, W is able to compute K as follows:

(s'vs/u) a w
•

Therefore this is a successful known session key attack.
The triangle attack can also be defeated through the use of a key deriva-

tion function, as described above. It is conjectured that this modified version of
MTI/AO is secure against known session key attacks.

12.5 Deniable Key Agreement Schemes

The concept of deniability provides an interesting counterpoint to the idea of

non-repudiation, which is a central requirement of signature schemes. Recall that

non-repudiation (in the context of a signature scheme) means that someone who

has signed a message cannot later plausibly deny having done so. This is useful in

any context where a signature should be considered to be a binding commitment,

such as signing a contract.

On the other hand, there are situations where Alice and Bob might wish to

engage in a private conversation, but neither of them desires that any third party

should be able to prove that they had a particular conversation, even if the keys

used to encrypt that conversation are leaked at some later time. In other words,

the conversation is secure, but it affords plausible deniability to the participants in

the event of a future key compromise.
Informally, a key agreement scheme is said to be deniable if this property is

achieved when the resulting session keys are used to encrypt a conversation be-

tween the parties executing the key agreement protocol. To be more precise, we

consider the following scenario.

I. An adversary gains access to the private keys belonging to V (this adversary

could be V himself, or some third party.

key

124: x3DH KAS

public domain parameters consist of a group (G, •y, an element it G hav-

Mdef n, and a key derivation function denoted by K DE

T has a long-term private key ar, where 0 tr n l. and a
long-term public key

br att.

fie value is included in T's certificate and is signed by the TA.

•1. U chooses at random, O ru n — 1, and computes

fien Il sends Cert(ll) and su to V.

2 V chooses rv at random, 0 rv n — 1, and computes

Then V sends Cert(V) and sv to ll.

Finally, V computes the session key

K = KDF(surv Il Il btP).

where he obtains the value bu from Cert(tl).

3. U computes the session key

K = KDF(sv'U Il bvru Il sv•u),

where she obtains the value by from Cert(V).

At the end of the session. u and V have both computed the same session key

K - KDF(a'U'V 1 Il

2. adversary produces a transcript of a session of a key agree•
mmt *theme invaving u ami V.

goal is to if the transcript constitutes evidence that the •es•ion
U and V actually pla:e. If so, this would implicate U.

key it turru out that it is pos•lbie to •imuiate (or
Out &ntxal a real trarøcripe For such a sheme, there is

480 Cryptography: Theory and Practice

no way to determine if the session in question actually occurred. So the adversary
is thus unable to implicate Il and such a scheme would therefore be deniable.

To illustrate this concept of deniability, it is useful to contrast the basic Diffie-
Hellman (Protocol 12.1), which is deniable, with STS (Protocol 12.2), which is not
deniable.

First we look at basic Diffie-Hellman. Suppose for the purpose of discussion
that Il and V use Protocol 12.1 to derive a session key. Then, at some later time,
V wishes to implicate ll. V can store and reveal all the information he sent or re-
ceived from U, along with his own private keys. In terms of the key agreement
protocol, this information (i.e., the transcript) would consist of the following in-
formation:

• V's private key, av, and

• the public keys bu = and bv = aav.

From this transcript, the key K aa ua v can be computed using the formula K =
bun v . However, there is no convincing evidence that it was U who shared this
key with V, because V could have simply created the public key bu himself. The
entire transcript could be forged by the adversary, and so we would say that basic
Diffie-He11man is deniable.

On the other hand, STS is not deniable. The reason for this is that both U and V

sign the public keys they exchange during the protocol. Now the transcript would

consist of

• V's private key, av,

• the public keys bu = and bv = aa v, and

• the signatures sigu(ID(V) Il bu Il bv) and sigv(ID(U) Il bv Il bu).

This transcript provides convincing evidence that the associated key K
aauav — bvau was created in a session involving Il and V. This because

the public keys bu and bv, along with ID(V), were signed by U. Therefore, V can

implicate U, and U cannot plausibly deny that she took part in the given session

of the key agreement protocol with V.

Thus, if deniability is a desired property of the key agreement scheme, then STS

does not provide a satisfactory solution. On the other hand, basic Diffie-Hellman,

while deniable, is susceptible to intruder-in-the-middle attacks. So the interesting

question is how to design deniable key agreement schemes that are secure against

intruder-in-the-middle attacks. We now present a recent method, known as X3DEl'

which is incorporated into the Signal messaging protocol.3 X3DH is quite similar

to MTI in some respects, but it uses three Diffie-Hellman keys instead of two. The

X3DH key agreement scheme is presented as Protocol 12.4.

3Signal is a messaging protocol that has achieved widespread use since its development by Open

Whisper Systems in 2013, notably in applications such as WhatsApp.

Key Agreement Schemes 481

We do not discuss the security properties of X3DH in detail. However, we men-

that is deniable
a
and

basic
it provides

intruder-in-the
perfect

middle
forward

attack
secrecy

does
(see

not
the
succeed

Exer-

don
We also observe that

ases).
because the adversary cannot modify the long-term public keys without detection

(since they are retrieved from a certificate). The adversary can modify the public

keys and sv, changing them to so and so, respectively. However, in this situa-

he would not be able to compute the resulting modified keys defined by the

protocol. Il would compute the key

KDF(dU4 Il Il advau).

However, the adversary cannot compute this key because he does not know the

value of aruav. V would compute the key

KDF(ar0rv Il Cuav Il a rvau

The adversary does not know the value of arvatl, so he cannot compute this key

either.

12.6 Key Updating

Key updating schemes provide methods of updating keys on a regular basis.
Ideally, the compromise of a key should not affect the security of previously-used
keys (this is the "perfect forward secrecy" property, as defined in Section 11.1), nor
should it allow the adversary to determine keys that are established in the future.
One obvious way to approach this problem would be to execute a Diffie-He11man
KAS every time a message is sent. Each key is used only once and then deleted,
and "new" keys have no dependence on old keys. Of course, Diffie-Hellman re-
quires "expensive" operations such as exponentiations in finite fields, so we might
seek less costly alternatives.

We already described the Logical Key Hierarchy, which is a type of key updat-
for dynamic networks, in Section 11.4. In Section 11.4, the reason for updating
s was to allow users to join or leave the network without impacting the secu-

rity Of the other network users. On the other hand, in this section, we have a pair
users who wish to communicate over a long period of time, and they wish toupdate their keys periodically.
We Will now describe in simplified form some of the key updating techniques

that are used in the Signal protocol. One of the goals of Signal is to provide end-to-
encryption, which ensures that only the communicating parties can decrypt

ement incorporated into Signal is sometimes termed a Diffie-

Pared to setting up a new Diffie-He11man key for every message sent) by about

482 Cryptography: Theory and Practice

25%. The idea is as follows: Every time U sends a message to V (or vice versa),
the sender chooses new public and private keys (e.g., au and bu = in the case
of user U) and sends the new public key along with a message that is encrypted
under the old Diffie-Hellman key. The next Diffie-Hellman key to be used by the
recipient is computed from the new public key along with the recipient's old pri-
vate key. See Protocol 12.5 for the details of this protocol.

In practice, an authenticated version of Diffie-He11man might be preferred.
We are just describing the updating (i.e., ratcheting) process using basic Diffie-
Hellman for simplicity.

If I-I and V used a Diffie-He11man KAS to compute a new key every time a mes-
sage is sent, they would each have to perform two exponentiations per message
sent. Here, each party performs three exponentiations to compute two successive
keys (after the initial key Koo is computed using two exponentiations by both par-
ties). This is how the 25% speedup is achieved.

Observe that an adversary who manages to access a user's private key will
only be able to use it to compute two successive keys.

The second major type of key updating or key ratcheting that is incorporated

into Signal makes use of a key derivation function denoted by KDF. The function

KDF has two inputs and two outputs. The two inputs are

1. a constant value C, and

2. a KDF key, say Ki,

and the two outputs are

1. a "new" KDF key, say Ki+l, and

2. an output key, denoted by OKi.\ 1.

We denote this process by the notation

(Ki+l, 014+1).

KDF is used to iteratively construct a KDF chain. This requires an initial KDF

key 1<0. Then a sequence of output keys is produced as follows:

(1<1, OKI)

(1<2, 01<2)

KDF(C, 1<2) (1<3, 01<3),

etc. The output keys OKI, 01<2, ... are used to encrypt and decrypt messages.
A KDF chain is faster than a public key ratchet because it is based on a fast

hash function. However, the security properties are weaker. An adversary who
compromises a KDF key Ki (and who knows the value of the constant C) can com-

pute all subsequent output keys, beginning with OKi+1. (However, assuming that

the function KDF is one-way, the adversary cannot compute any previous output

Key Agreement Schemes

protocol
12.5:

DIFFIE-HELLMAN RATCHET

The public domain parameters consist of a group (G, and an element e G

having
order n.

1. U chooses a private key ao and computes a corresponding public key 'tat).

She sends to V.

2. V chooses a private key bo and computes a corresponding public key 'tbo.

He also computes the Diffie-Hellman key

Koo = (aao)bo

and he sends to Il along with a message encrypted with Koo, say yoo =

eKm(xoo)•

3. Il receives abo and yoo. She computes the Diffie-Hellman key

Koo =

and then she uses Koo to decrypt yoo. Il then chooses a new private key

al and she computes the corresponding public key ital. She sends to V.

Finally, Il computes the Diffie-Hellman key

KIO = (aboar

and she uses KIO to encrypt a message = eK10(x10). The value is sent
to V.

4. V receives and He computes the Diffie-Hellman key

KIO (a at) bo

and then he uses KIO to decrypt V then chooses a new private key bl
and computes the corresponding public key abl. He sends to U. Finally,
V computes the Diffie-Hellman key

KII = (aal)bl

and he uses KII to encrypt a message Yll = eKt1 (Xll). The value Yll is sent
toll.

The preceding two steps are repeated as often as desired.

Cryptography: Theory and Practice

keys.) So a particular KDF chain should not be used for an extended period of
time.

The Signal protocol uses both public-key ratchets and KDF chains. The combi-
nation of these two techniques is called the double ratchet. We do not go into
details. However, roughly speaking, the keys created in the public-key ratchet are
not used to encrypt messages. They are instead used to initiate KDF chains. At any
point in time, there are two active KDF chains that are maintained by IJ and V. U
has a sending chain whose output keys are used to encrypt messages that IJ sends
to V, and a receiving chain whose output keys are used to decrypt messages that
IJ receives from V. V also has a sending chain and a receiving chain. The sending
chain for V is identical to the receiving chain for I-I and the receiving chain for V is
identical to the sending chain for U. Whenever the public-key ratcheting scheme
is applied, it is used to derive two new initial KDF keys, one for each of these two
KDF chains.

12.7 Conference Key Agreement Schemes

A conference key agreement scheme (or, CKAS) is a key agreement scheme in

which a subset of two or more users in a network can construct a common se-
cret key (i.e., a group key). In this section, we discuss (without proof) two confer-

ence key agreement schemes. The first CKAS we present was described in 1994 by

Burmester and Desmedt. We also present the 1996 CKAS due to Steiner, Tsudik,

and Waidner.
Both of these schemes are modifications of the Diffie-He11man KAS in which

m users, say I-10,..., m—l, compute a common secret key. The schemes are set in

a subgroup of a finite group in which the Decision Diffie-Hellman problem is

intractable.
The Burmester-Desmedt CKAS is presented as Protocol 12.6. It is not hard to

verify that all the participants in a session of this CKAS will compute the same key,

Z, provided that the participants behave correctly and there is no active adversary

who changes any of the transmitted messages. Suppose we define

Yi = b/i+l = aajai+l

for all i (where all subscripts are to be reduced modulo m). Then

aj ai aai+laj Y

aai-1Ai ̄ Yi—l

for all i. Then the following equations confirm that the key computation works

