Definition 7.1: A signature scheme is a five-tuple \((\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})\), where the following conditions are satisfied:

1. \(\mathcal{P}\) is a finite set of possible messages
2. \(\mathcal{A}\) is a finite set of possible signatures
3. \(\mathcal{K}\), the keyspace, is a finite set of possible keys
4. For each \(K \in \mathcal{K}\), there is a signing algorithm \(\text{sig}_K \in \mathcal{S}\) and a corresponding verification algorithm \(\text{ver}_K \in \mathcal{V}\). Each \(\text{sig}_K : \mathcal{P} \to \mathcal{A}\) and \(\text{ver}_K : \mathcal{P} \times \mathcal{A} \to \{\text{true}, \text{false}\}\) are functions such that the following equation is satisfied for every message \(x \in \mathcal{P}\) and for every signature \(y \in \mathcal{A}\):

\[
\text{ver}(x, y) = \begin{cases}
\text{true} & \text{if } y = \text{sig}(x) \\
\text{false} & \text{if } y \neq \text{sig}(x).
\end{cases}
\]

A pair \((x, y)\) with \(x \in \mathcal{P}\) and \(y \in \mathcal{A}\) is called a signed message.
Security Requirements for Signature Schemes

Attacks

key-only attack
Oscar possesses Alice’s public key, i.e., the verification function, \(\text{ver}_K \).

known message attack
Oscar possesses a list of messages previously signed by Alice, say

\[(x_1, y_1), (x_2, y_2), \ldots,\]

where the \(x_i \)'s are messages and the \(y_i \)'s are Alice’s signatures on these messages (so \(y_i = \text{sig}_K(x_i) \), \(i = 1, 2, \ldots \)).

chosen message attack
Oscar requests Alice’s signatures on a list of messages. Therefore he chooses messages \(x_1, x_2, \ldots \), and Alice supplies her signatures on these messages, namely, \(y_i = \text{sig}_K(x_i) \), \(i = 1, 2, \ldots \).
Attack
Goals

total break

The adversary is able to determine Alice's private key, i.e., the signing function sig_K. Therefore he can create valid signatures on any message.

selective forgery

With some non-negligible probability, the adversary is able to create a valid signature on a message chosen by someone else. In other words, if the adversary is given a message x, then he can determine (with some probability) the signature y such that $\text{ver}_K(x, y) = \text{true}$. The message x should not be one that has previously been signed by Alice.

existential forgery

The adversary is able to create a valid signature for at least one message. In other words, the adversary can create a pair (x, y) where x is a message and $\text{ver}_K(x, y) = \text{true}$. The message x should not be one that has previously been signed by Alice.

Common modulus RSA exploit!

$y_1 = \text{sig}_K(x_1)$

$y_2 = \text{sig}_K(x_2)$

$\Rightarrow \text{ver}_K(x_1x_2 \mod n, y_1y_2 \mod n) = \text{T}$
1. $G = (\mathbb{Z}_p^*, \cdot)$, p prime, α a primitive element modulo p

2. $G = (\mathbb{Z}_p^*, \cdot)$, p, q prime, $p \equiv 1 \mod q$, α an element in \mathbb{Z}_p having order q

3. $G = (\mathbb{F}_{2^n}^*, \cdot)$, α a primitive element in \mathbb{F}_{2^n}

4. $G = (E, +)$, where E is an elliptic curve modulo a prime p, $\alpha \in E$ is a point having prime order $q = \#E/h$, where (typically) $h = 1, 2$ or 4

5. $G = (E, +)$, where E is an elliptic curve over a finite field \mathbb{F}_{2^n}, $\alpha \in E$ is a point having prime order $q = \#E/h$, where (typically) $h = 2$ or 4
Signatures and Hash Functions

FIGURE 7.1
Signing a message digest

<table>
<thead>
<tr>
<th>message</th>
<th>x</th>
<th>$x \in {0, 1}^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>message digest</td>
<td>$z = h(x)$</td>
<td>$z \in \mathcal{Z}$</td>
</tr>
<tr>
<td>signature</td>
<td>$y = \text{sig}_K(z)$</td>
<td>$y \in \mathcal{Y}$</td>
</tr>
</tbody>
</table>

hash

sign

encrypt
One-time Signatures

\textbf{Winternitz OTS used in IOTA}

\textbf{Cryptosystem 7.6: Lamport Signature Scheme}

Let k be a positive integer and let $\mathcal{P} = \{0, 1\}^k$. Suppose $f : Y \rightarrow Z$ is a one-way function, and let $A = Y^k$. Let $y_{i,j} \in Y$ be chosen at random, $1 \leq i \leq k$, $j = 0, 1$, and let $z_{i,j} = f(y_{i,j})$, $1 \leq i \leq k$, $j = 0, 1$. The key K consists of the $2k$ y's and the $2k$ z's. The y's are the private key while the z's are the public key.

For $K = (y_{i,j}, z_{i,j} : 1 \leq i \leq k, j = 0, 1)$, define

$$\text{sig}_K(x_1, \ldots, x_k) = (y_1, x_1, \ldots, y_k, x_k).$$

A signature (a_1, \ldots, a_k) on the message (x_1, \ldots, x_k) is verified as follows:

$$\text{ver}_K((x_1, \ldots, x_k), (a_1, \ldots, a_k)) = \text{true} \iff f(a_i) = z_{i,x_i}, 1 \leq i \leq k.$$
Example 7.6 7879 is prime and 3 is a primitive element in \mathbb{Z}_{7879}^*. Define

$$f(x) = 3^x \mod 7879.$$

Suppose $k = 3$, and Alice chooses the six (secret) random numbers

$$y_{1,0} = 5831,\quad z_{1,0} = 2009$$
$$y_{1,1} = 735,\quad z_{1,1} = 3810$$
$$y_{2,0} = 803,\quad z_{2,0} = 4672$$
$$y_{2,1} = 2467,\quad z_{2,1} = 4721$$
$$y_{3,0} = 4285,\quad z_{3,0} = 268$$
$$y_{3,1} = 6449,\quad z_{3,1} = 5731.$$

These z’s are published. Now, suppose Alice wants to sign the message

$$x = (1, 1, 0).$$

The signature for x is

$$(y_{1,1}, y_{2,1}, y_{3,0}) = (735, 2467, 4285).$$

To verify this signature, it suffices to compute the following:

$$3^{735} \mod 7879 = 3810$$
$$3^{2467} \mod 7879 = 4721$$
$$3^{4285} \mod 7879 = 268.$$

Hence, the signature is verified.
Algorithm 7.1: LAMPORT-PREIMAGE(z)

external f, LAMPORT-FORGE

comment: we assume $f : Y \rightarrow Z$ is a bijection

choose a random $i_0 \in \{1, \ldots, k\}$ and a random $j_0 \in \{0, 1\}$

construct a random public key $Z = (z_{i,j} : 1 \leq i \leq k, j = 0, 1)$ such that $z_{i_0,j_0} = z$

$((x_1, \ldots, x_k), (a_1, \ldots, a_k)) \leftarrow$ LAMPORT-FORGE(Z)

if $x_{i_0} = j_0$
then return (a_{i_0})
else return (fail)

If $x_{i_0} = j_0$ in the forgery,

$$f(a_{i_0}) = z_{i_0,x_{i_0}} = z_{i_0,j_0} = z,$$

THEOREM 7.1 Suppose that $f : Y \rightarrow Z$ is a one-way bijection, and suppose there exists a deterministic algorithm, LAMPORT-FORGE, that will create an existential forgery for the Lamport Signature Scheme using a key-only attack, for any public key Z consisting of $2k$ distinct elements of Z. Then there exists an algorithm, LAMPORT-PREIMAGE, that will find preimages of random elements $z \in Z$ with average probability at least $1/2$.
Cryptosystem 7.7: Full Domain Hash

Let \(k \) be a positive integer; let \(\mathcal{F} \) be a family of trapdoor one-way permutations such that \(f : \{0, 1\}^k \to \{0, 1\}^k \) for all \(f \in \mathcal{F} \); and let \(G : \{0, 1\}^* \to \{0, 1\}^k \) be a "random" function. Let \(\mathcal{P} = \{0, 1\}^* \) and \(\mathcal{A} = \{0, 1\}^k \), and define

\[
\mathcal{K} = \{(f, f^{-1}, G) : f \in \mathcal{F}\}.
\]

Given a key \(K = (f, f^{-1}, G) \), \(f^{-1} \) is the private key and \((f, G)\) is the public key.

For \(K = (f, f^{-1}, G) \) and \(x \in \{0, 1\}^* \), define

\[
\text{sig}_K(x) = f^{-1}(G(x)).
\]

A signature \(y = (y_1, \ldots, y_k) \in \{0, 1\}^k \) on the message \(x \) is verified as follows:

\[
\text{ver}_K(x, y) = \text{true} \iff f(y) = G(x).
\]
Algorithm 7.2: FDH-INVERT\((z_0, q_h)\)

external \(f \)

procedure SIMG\((x)\)

\[
\text{if } j > q_h \\
\text{then return ("failure")}
\]

\[
\text{else if } j = j_0 \\
\text{then } z \leftarrow z_0
\]

\[
\text{else let } z \in \{0, 1\}^k \text{ be chosen at random}
\]

\[
j \leftarrow j + 1
\]

\[
\text{return } (z)
\]

main

\[
\text{choose } j_0 \in \{1, \ldots, q_h\} \text{ at random}
\]

\[
j \leftarrow 1
\]

\[
\text{insert the code for FDH-FORGE}(f) \text{ here}
\]

\[
\text{if } \text{FDH-FORGE}(f) = (x, y)
\]

\[
\begin{cases}
\text{if } f(y) = z_0 \\
\text{then return } (y) \\
\text{else return ("failure")}
\end{cases}
\]

THEOREM 7.2 Suppose there exists an algorithm FDH-FORGE that will output an existential forgery for Full Domain Hash with probability \(\epsilon > 2^{-k} \), using a key-only attack. Then there exists an algorithm FDH-INVERT that will find inverses of random elements \(z_0 \in \{0, 1\}^k \) with probability at least \((\epsilon - 2^{-k})/q_h \).
Cryptosystem 7.8: Chaum-van Antwerpen Signature Scheme

Let \(p = 2q + 1 \) be a prime such that \(q \) is prime and the discrete log problem in \(\mathbb{Z}_p \) is intractable. Let \(\alpha \in \mathbb{Z}_p^* \) be an element of order \(q \). Let \(1 \leq a \leq q - 1 \) and define \(\beta = \alpha^a \mod p \). Let \(G \) denote the multiplicative subgroup of \(\mathbb{Z}_p^* \) of order \(q \) (\(G \) consists of the quadratic residues modulo \(p \)). Let \(P = A = G \), and define

\[K = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \mod p\}. \]

The values \(p, \alpha \) and \(\beta \) are the public key, and \(a \) is the private key.

For \(K = (p, \alpha, a, \beta) \) and \(x \in G \), define

\[y = \text{sig}_K(x) = x^a \mod p. \]

For \(x, y \in G \), verification is done by executing the following protocol:

1. Bob chooses \(e_1, e_2 \) at random, \(e_1, e_2 \in \mathbb{Z}_q^* \).
2. Bob computes \(c = y^{e_1} \beta^{e_2} \mod p \) and sends it to Alice.
3. Alice computes \(d = c^{a^{-1}} \mod q \mod p \) and sends it to Bob.
4. Bob accepts \(y \) as a valid signature if and only if

\[d \equiv x^{e_1} \alpha^{e_2} \mod p. \]

Signer must cooperate to verify.
Disavowal of forgery \(\Rightarrow \) Undeniable.
Algorithm 7.3: DISAVOWAL

1. Bob chooses e_1, e_2 at random, $e_1, e_2 \in \mathbb{Z}_q$
2. Bob computes $c = y^{e_1} \beta^{e_2} \mod p$ and sends it to Alice
3. Alice computes $d = c^{a^{-1} \mod q} \mod p$ and sends it to Bob
4. Bob verifies that $d \not\equiv x^{e_1} \alpha^{e_2} \pmod{p}$
5. Bob chooses f_1, f_2 at random, $f_1, f_2 \in \mathbb{Z}_q$
6. Bob computes $C' = y^{f_1} \beta^{f_2} \mod p$ and sends it to Alice
7. Alice computes $D = C^a \mod q \mod p$ and sends it to Bob
8. Bob verifies that $D \not\equiv x^{f_1} \alpha^{f_2} \pmod{p}$
9. Bob concludes that y is a forgery if and only if

$$ (d^a)^{-e_2} f_1 \equiv (D^a)^{-f_2} e_1 \pmod{p}. $$
THEOREM 7.3 If $y \neq x^a \pmod{p}$, then Bob will accept y as a valid signature for x with probability $1/q$.

Proof:

write $c = \alpha^i$, $d = \alpha^j$, $x = \alpha^k$,

$y = \alpha^\ell$, where $i, j, k, \ell \in \mathbb{Z}_q$ and all arithmetic is modulo p.

$c \equiv y^{e_1} \beta^{e_2} \pmod{p}$

$d \equiv x^{e_1} \alpha^{e_2} \pmod{p}$.

This system is equivalent to the following system:

$i \equiv \ell e_1 + a e_2 \pmod{q}$

$j \equiv k e_1 + e_2 \pmod{q}$.

Now, we are assuming that

$y \neq x^a \pmod{p}$,

so it follows that

$\ell \neq ak \pmod{q}$. $\det \begin{bmatrix} a \\ k \\ 1 \end{bmatrix} \neq 0$

so d solves to (e_1, e_2).

Alice can cheat with $1/q$ chance.\[\Box\]