Definition 7.1: A signature scheme is a five-tuple $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$, where the following conditions are satisfied:

- 1. P is a finite set of possible messages
- 2. A is a finite set of possible signatures
- 3. K, the keyspace, is a finite set of possible keys
- 4. For each $K \in \mathcal{K}$, there is a signing algorithm $\operatorname{sig}_K \in \mathcal{S}$ and a corresponding verification algorithm $\operatorname{ver}_K \in \mathcal{V}$. Each $\operatorname{sig}_K : \mathcal{P} \to \mathcal{A}$ and $\operatorname{ver}_K : \mathcal{P} \times \mathcal{A} \to \{true, false\}$ are functions such that the following equation is satisfied for every message $x \in \mathcal{P}$ and for every signature $y \in \mathcal{A}$:

 $\operatorname{ver}(x,y) = \left\{ egin{array}{ll} true & ext{if } y = \operatorname{sig}(x) \\ false & ext{if } y \neq \operatorname{sig}(x). \end{array}
ight.$

A pair (x, y) with $x \in \mathcal{P}$ and $y \in \mathcal{A}$ is called a signed message.

Security Requirements for Signature Schemes

Attacks

key-only attack

Oscar possesses Alice's public key, i.e., the verification function, ver_K .

known message attack

Oscar possesses a list of messages previously signed by Alice, say

$$(x_1, y_1), (x_2, y_2), \ldots,$$

where the x_i 's are messages and the y_i 's are Alice's signatures on these messages (so $y_i = \text{sig}_K(x_i)$, i = 1, 2, ...).

chosen message attack

Oscar requests Alice's signatures on a list of messages. Therefore he chooses messages x_1, x_2, \ldots , and Alice supplies her signatures on these messages, namely, $y_i = \text{sig}_K(x_i)$, $i = 1, 2, \ldots$

Attack Goals

total break

The adversary is able to determine Alice's private key, i.e., the signing function sig_K . Therefore he can create valid signatures on any message.

selective forgery

With some non-negligible probability, the adversary is able to create a valid signature on a message chosen by someone else. In other words, if the adversary is given a message x, then he can determine (with some probability) the signature y such that $\operatorname{ver}_K(x,y) = \operatorname{true}$. The message x should not be one that has previously been signed by Alice.

existential forgery

The adversary is able to create a valid signature for at least one message. In other words, the adversary can create a pair (x, y) where x is a message and $ver_K(x, y) = true$. The message x should not be one that has previously been signed by Alice.

common modulus RSA exploit!

$$Y_1 = \text{Sig}_K(x_1) \rightarrow \text{Vev}_K(x_1 \times \text{mod} n), \quad Y_2 = \text{Sig}_K(x_2) \rightarrow \text{Vev}_K(x_1 \times \text{mod} n) = T$$

Discrete Logarithm Algorithms in Practice

- 1. $G = (\mathbb{Z}_p^*, \cdot)$, p prime, α a primitive element modulo p
- 2. $G = (\mathbb{Z}_p^*, \cdot), p, q$ prime, $p \equiv 1 \mod q, \alpha$ an element in \mathbb{Z}_p having order q
- ; 3. $G = (\mathbb{F}_{2^n}^*, \cdot)$, α a primitive element in $\mathbb{F}_{2^n}^*$
 - 4. G = (E, +), where E is an elliptic curve modulo a prime $p, \alpha \in E$ is a point having prime order q = #E/h, where (typically) h = 1, 2 or 4
 - 5. G = (E, +), where E is an elliptic curve over a finite field \mathbb{F}_{2^n} , $\alpha \in E$ is a point having prime order q = #E/h, where (typically) h = 2 or 4

Signatures and Hash Functions

FIGURE 7.1 Signing a message digest

message
$$x$$
 $x \in \{0,1\}^*$

$$\downarrow$$
message digest $z = h(x)$ $z \in \mathbb{Z}$

$$\downarrow$$
signature $y = sig_K(z)$ $y \in \mathbb{Y}$

hash sign renompt

Provably Secure Signature Schemes

One-time Signatures

Winternitz 075

used in 107A

Cryptosystem 7.6: Lamport Signature Scheme

Let k be a positive integer and let $\mathcal{P} = \{0,1\}^k$. Suppose $f: Y \to Z$ is a one-way function, and let $\mathcal{A} = Y^k$. Let $y_{i,j} \in Y$ be chosen at random, $1 \le i \le k$, j = 0, 1, and let $z_{i,j} = f(y_{i,j})$, $1 \le i \le k$, j = 0, 1. The key K consists of the 2k y's and the 2k z's. The y's are the private key while the z's are the public key.

For $K = (y_{i,j}, z_{i,j} : 1 \le i \le k, j = 0, 1)$, define

$$\operatorname{sig}_K(x_1,\ldots,x_k)=(y_{1,x_1},\ldots,y_{k,x_k}).$$

A signature (a_1, \ldots, a_k) on the message (x_1, \ldots, x_k) is verified as follows:

$$\operatorname{ver}_K((x_1,\ldots,x_k),(a_1,\ldots,a_k))=\operatorname{true}\Leftrightarrow f(a_i)=z_{i,x_i},1\leq i\leq k.$$

Example 7.6 7879 is prime and 3 is a primitive element in \mathbb{Z}_{7879}^* . Define

$$f(x) = 3^x \bmod 7879.$$

Suppose k = 3, and Alice chooses the six (secret) random numbers.

$$y_{1,0} = 5831$$
 $y_{1,1} = 735$
 $y_{2,0} = 803$
 $y_{2,1} = 2467$
 $z_{2,1} = 4721$
 $z_{3,0} = 4285$
 $z_{3,1} = 6449.$
 $z_{1,1} = 3810$
 $z_{2,0} = 4672$
 $z_{2,1} = 4721$
 $z_{3,0} = 268$

These z's are published. Now, suppose Alice wants to sign the message

$$x = (1, 1, 0).$$

The signature for x is

$$(y_{1,1}, y_{2,1}, y_{3,0}) = (735, 2467, 4285).$$

To verify this signature, it suffices to compute the following:

$$3^{735} \mod 7879 = 3810$$

 $3^{2467} \mod 7879 = 4721$
 $3^{4285} \mod 7879 = 268$.

Hence, the signature is verified.

```
Algorithm 7.1: LAMPORT-PREIMAGE(z)

external f, LAMPORT-FORGE

comment: we assume f: Y \to Z is a bijection

choose a random i_0 \in \{1, \ldots, k\} and a random j_0 \in \{0, 1\}

construct a random public key \mathcal{Z} = (z_{i,j}: 1 \le i \le k, j = 0, 1)

such that z_{i_0,j_0} = z

((x_1, \ldots, x_k), (a_1, \ldots, a_k)) \leftarrow \text{LAMPORT-FORGE}(\mathcal{Z})

if x_{i_0} = j_0

then return (a_{i_0})

else return (fail)
```

If $x_{i_0} = j_0$ in the forgery,

$$f(a_{i_0}) = z_{i_0,x_{i_0}} = z_{i_0,j_0} = z,$$

THEOREM 7.1 Suppose that $f: Y \to Z$ is a one-way bijection, and suppose there exists a deterministic algorithm, LAMPORT-FORGE, that will create an existential forgery for the Lamport Signature Scheme using a key-only attack, for any public key Z consisting of 2k distinct elements of Z. Then there exists an algorithm, LAMPORT-PREIMAGE, that will find preimages of random elements $z \in Z$ with average probability at least 1/2.

Cryptosystem 7.7: Full Domain Hash

Let k be a positive integer; let \mathcal{F} be a family of trapdoor one-way permutations such that $f: \{0,1\}^k \to \{0,1\}^k$ for all $f \in \mathcal{F}$; and let $G: \{0,1\}^* \to \{0,1\}^k$ be a "random" function. Let $\mathcal{P} = \{0,1\}^*$ and $\mathcal{A} = \{0,1\}^k$, and define

$$\mathcal{K} = \{ (f, f^{-1}, G) : f \in \mathcal{F} \}.$$

Given a key $K = (f, f^{-1}, G), f^{-1}$ is the private key and (f, G) is the public key.

For $K = (f, f^{-1}, G)$ and $x \in \{0, 1\}^*$, define

$$\operatorname{sig}_K(x) = f^{-1}(G(x)).$$

A signature $y = (y_1, ..., y_k) \in \{0, 1\}^k$ on the message x is verified as follows:

$$\operatorname{ver}_K(x,y)=\operatorname{true} \Leftrightarrow f(y)=G(x).$$


```
Algorithm 7.2: FDH-INVERT(z_0, q_h)
 external f
 procedure SIMG(x)
  if j > q_h
    then return ("failure")
    else if j = j_0
    then z \leftarrow z_0
    else let z \in \{0, 1\}^k be chosen at random
  j \leftarrow j + 1
 return (z)
 main
  choose j_0 \in \{1, \ldots, q_h\} at random
  j \leftarrow 1
  insert the code for FDH-FORGE(f) here
  if FDH-FORGE(f) = (x, y)
            if f(y) = z_0
              then return (y)
    then
              else return ("failure")
```

THEOREM 7.2 Suppose there exists an algorithm FDH-FORGE that will output an existential forgery for Full Domain Hash with probability $\epsilon > 2^{-k}$, using a keyonly attack. Then there exists an algorithm FDH-INVERT that will find inverses of random elements $z_0 \in \{0,1\}^k$ with probability at least $(\epsilon - 2^{-k})/q_h$.

Undeniable Signatures

Cryptosystem 7.8: Chaum-van Antwerpen Signature Scheme

Let p=2q+1 be a prime such that q is prime and the discrete log problem in \mathbb{Z}_p is intractable. Let $\alpha \in \mathbb{Z}_p^*$ be an element of order q. Let $1 \le a \le q-1$ and define $\beta = \alpha^a \mod p$. Let G denote the multiplicative subgroup of \mathbb{Z}_p^* of order q (G consists of the quadratic residues modulo p). Let $\mathcal{P} = \mathcal{A} = G$, and define

$$\mathcal{K} = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}.$$

The values p, α and β are the public key, and a is the private key.

For $K = (p, \alpha, a, \beta)$ and $x \in G$, define

$$y = \operatorname{sig}_K(x) = x^a \mod p$$
.

For $x, y \in G$, verification is done by executing the following protocol:

- 1. Bob chooses e_1, e_2 at random, $e_1, e_2 \in \mathbb{Z}_q^{\times}$.
- 2. Bob computes $c = y^{e_1} \beta^{e_2} \mod p$ and sends it to Alice.
- 3. Alice computes $d = c^{a^{-1} \mod q} \mod p$ and sends it to Bob.
 - 4. Bob accepts y as a valid signature if and only if

$$d \equiv x^{e_1} \alpha^{e_2} \; (\bmod \; p).$$

Signer must cooperate to renify
Disavowal of Gargeny >
Underiable

Algorithm 7.3: DISAVOWAL

- 1. Bob chooses ϵ_1, ϵ_2 at random, $e_1, e_2 \in \mathbb{Z}_q^{\kappa}$
- 2. Bob computes $c = y^{c_1} \beta^{e_2} \mod p$ and sends it to Alice
- 3. Alice computes $d = c^{a^{-1} \mod q} \mod p$ and sends it to Bob
- 4. Bob verifies that $d \not\equiv x^{e_1} \alpha^{e_2} \pmod{p}$
- 5. Bob chooses f_1, f_2 at random, $f_1, f_2 \in \mathbb{Z}_q^{\times}$
- 6. Bob computes $C = y^{f_1} \beta^{f_2} \mod p$ and sends it to Alice
- 7. Alice computes $D = C^{a^{-1} \mod q} \mod p$ and sends it to Bob
- 8. Bob verifies that $D \not\equiv x^{f_1} \alpha^{f_2} \pmod{p}$
- 9. Bob concludes that y is a forgery if and only if

$$(d\alpha^{-\epsilon_2})^{f_1} \equiv (D\alpha^{-f_2})^{\epsilon_1} \text{ (mod } p).$$

THEOREM 7.3 If $y \not\equiv x^a \pmod{p}$, then Bob will accept y as a valid signature for x with probability 1/q.

Proof:

write $c = \alpha^i$, $d = \alpha^j$, $x = \alpha^k$,

 $y = \alpha^{\ell}$, where $i, j, k, \ell \in \mathbb{Z}_q$ and all arithmetic is modulo p.

$$c \equiv y^{e_1} \beta^{e_2} \pmod{p}$$

 $d \equiv x^{e_1} \alpha^{e_2} \pmod{p}$.

He I q ways

This system is equivalent to the following system:

$$i \equiv \ell e_1 + a e_2 \pmod{q}$$

 $j \equiv k e_1 + e_2 \pmod{q}$.

Now, we are assuming that

$$y \not\equiv x^a \pmod{p}$$
,

so it follows that

$$\ell \not\equiv ak \pmod{q}$$
. $\det \left[k \mid a\right] \neq 0$