Definition 7.1: A signature scheme isa five-tuple (P, A, X, 8, V), where
the following conditions are satisfied:

1. Pis a finite set of possible messages

2. A is a finite set of possible signatures

3. X, the keyspace, is a finite set of possible keys

4. For each K € X, there is a signing algorithm siggz € 8 and a corre-
sponding verification algorithm verg € V. Each sigg ¢ P — A and
verg : P x A — {true, false} are functions such that the following
equation is satisfied for every message ¢ € ‘P and for every signature
yEA:

false ify # sig(z).
A pair (z, y) with z € P and y € A is called a signed message.

\.Ief(-'lh y) = { true ify= SIS(‘B)



Security Requirements for Signature Schemes

Ty

Aftacks

key-only attack
Oscar possesses Alice’s public key, i.e., the verification function, verg.

known message attack

Oscar possesses a list of messages previously signed by Alice, say

(311 yl)ﬁ (323 y?)t ey

where the z;'s are messages and the y;’s are Alice’s signatures on these
messages (so y; = sigg(zi), 1 =1,2,...).

chosen message attack
Oscar requests Alice’s signatures on a list of messages. Therefore he chooses

messages z, I2,..., and Alice supplies her signatures on these messages,
namely, y; = sigg(z:),i=1,2,....



AHack
Goals

total break

The adversary is able to determine Alice’s private key, i.e., the signing func-
tion sig . Therefore he can create valid signatures on any message.

selective forgery

With some non-negligible probability, the adversary is able to create a valid
signature on a message chosen by someone else. In other words, if the ad-
versary is given a message z, then he can determine (with some probability)
the signature y such that verg (z, y) = true. The message z should not be
one that has previously been signed by Alice.

existential forgery

The adversary is able to create a valid signature for at least one message. In
other words, the adversary can create a pair (z, ¥} where z is a message and
verg(z,y) = true. The message z should not be one that has previously
been signed by Alice.
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Discrele Logarithm Algorithms in Practice

G = (Z,,), pprime, o a primitive element modulo p
G=(Z,,),p,qprime, p=1mod ¢, a an element in Z, having order ¢
G = (Fax",-), a a primitive element in Faa *

G = (FE,+), where E is an elliptic curve modulo a prime p, a € E is a

point having prime order ¢ = # E/h, where (lypically) h =1,20r4

G = (E, +), where E is an elliptic curve over a finite field Fan,a € E'is a
point having prime order ¢ = #E/h, where (typically) h = 2 or 4



Signatures and Hash Functions

FIGURE 7.1
Signing a message digest
message oz z € {0,1}"
message digest . z =Jl"1(z) z€Z
signature Y= sfg x(2) yey
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Provably Secure Signature Schemes
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Cryptosystem 7.6: Lamport Signature Scheme

Let k be a positive integer and let P = {0, 1}*. Suppose f : Y — Z is a one-

way function, and let A = Y'*. Let Yi,j € Y be chosen atrandom, 1 < i <k,

j=0,1, andletz,J = f(y,J) 1< i<k, j=0,1 Thekey K consists

| of the 2k y’s and the 2k z’s. The y’s are the pnvate key while the 2’s are the
public key.

For K = (y,-,j,z,-,j 01 S 1 S k,] = 0, 1), define

Sigr (Z1,+ -2 Tk) = (Y1,000- -+ s Ykyz ) -

A signature (ay, . .., ax) on the message (z;, .. ., zx) is verified as follows:

verj;(((a:l, e Zk), (@1, .., 0k)) = true & flai) = zi 7,1 < i< k.




Example7.6 7879 is prime and 3 is a primitive element in Z7g79*. Define

f(a:) = 3° mod 7879.

Suppose k = 3, and Alice chooses the six (secret) random numbers .

Y1,0 = 9831 z1,0 = 2009

Y11 =735 -F 211 = 3810
0 eo=803 é 70 = 4672

© pa=2467 oo = 4721

ya,0 = 4285 23,0 = 268

ys,1 = 6449. 231 = 5731,

These 2’s are published. Now, suppose Alice wants to sign the message

z = (1,1,0).
The signature for z is
(1,11 2,1, ¥3,0) = (735, 2467,4285).

To verify this signature, it suffices to compute the following:

3735 mod 7879 = 3810
32487 mod 7879 = 4721
34285 1104 7879 = 268.

Hence, the signature is verified.



Algorithm 7.1: LAMPORT-PREIMAGE(z)

external f, LAMPORT-FORGE
comment: we assume f : ¥ — Z is a bijection

choose arandom i € {1,..., k} and a random jo € {0, 1}
construct a random publickey Z = (z;; : 1< i< k,7=0,1)
such that z;, ;, = z ;
((z1,...,2k), (a1,...,ax)) & LAMPORT-FORGE(Z)
if 2;, = jo
then return (a;,)
else return (fail)

If z;, = jointhe forgery,

f(aio) = ziﬂixt'o = z’.DrjO =2z,

THEOREM 7.1 Suppose that f : Y — Z is a one-way bijection, and suppose
there exists a deterministic algorithm, LAMPORT-FORGE, that will create an ex-
istential forgery for the Lamport Signature Scheme using a key-only attack, for
any public key Z consisting of 2k distinct elements of Z. Then there exists an
algorithm, LAMPORT-PREIMAGE, that will find preimages of random elements
z € Z with average probability at least 1/2.
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Cryptosystem 7.7: Full Domain Hash

Let k be a positive integer; let & be a family of trapdoor one-way permutations
| such that f : {0,1}* — {0,1}* forall f € F;andletG : {0,1}* — {0,1}*
be a “random” function. Let P = {0,1}* and A = {0, 1}*, and define

X={(f,f'G): feF})

Given akey K = (f, f~1,G), f! is the private key and (f, G) is the public
key.

For K = (f, f~1,G)and z € {0,1}*, define
sigg (2) = f~1(G(2)).

A signature y = (y1,...,9x) € {0, 1}* on the message z is veriﬁeci as fol-
lows:

verg (z,y) = true & f(y) = G(z).




Algorithm 7.2: FDH-INVERT(zg, q3)
external f
procedure SIMG(z)
ifj > qn
then return (“failure”)
else if 7 = jo
then z + 2 :
else let z € {0, 1}* be chosen at random
jej+l | .
return (z)
main
choose jo € {1,...,qx} at random
j &1
insert the code for FDH-FORGE( f) here
if FDH-FORGE(f) = (z,y)
if f(y) = 2o ' '
then { thenreturn (y) |
else return (“failure”) _ '

THEOREM 7.2 Suppose there exists an algorithm FDH-FORGE that will output
an existential forgery for Full Domain Hash with probabilitye > 2_"‘, using a key-
only attack. Then there exists an algorithm FDH-INVERT that will find inverses
of random elements zo € {0, 1}* with probability at least (€ — 27%) /qp.



Undeniable Signatures

Cryptosystem 7.8: Chaum-van Antwerpen Signature Scheme

Let p = 2q + 1 be a prime such that ¢ is prime and the discrete log problem in
Z, is intractable. Let o € Z," be an element of orderg. Let 1 <a < ¢ -1
and define B = a® mod p. Let G denote the multiplicative subgroup p of Zy

of order g (G consists of the quadratic residues modulo p). Let P = A = G
and define

X = {(p,a,8) : B = o® {mod p)}.
The values p, « and § are the public key, and a is the private key. -

For K = (p, @, a, B) and z € G, define

y = sigg(z) = z° mod p.’

For z,y € G, verification is done by executing the following protocol:

1. Bob chooses e;, e at random, €3, €2 € IZ(fC.
2. Bob computes ¢ = y*! 32 mod p and sends it to Alice.

. 3. Alice computes d = ¢® ™°d9 mod p and sends it to Bob.
4. Bob accepts y as a valid signature if and only if

d = z*'a®? (mod p).
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Algorithm 7.3: DISAVOWAL

R EE

Bob chooses €3, ¢, at random, ey, e € Zf(

Bob computes ¢ = y°! 32 mod p and sends it to Alice
Alice computes d = ¢®~ ™°47 mod p and sends it to Bob
Bob verifies thatd Z z'a®? (mod p)

Bob chooses f;. f2 at random, f;, f2 € Zq)(

Bob computes C' = »/1 /2 mod p and sends it to Alice
Alice computes D = Ca™" med 4 nyod p and sends it to Bob
Bob verifies that D # =/ o/ (mod p)

Bob concludes that y is a forgery if and only if

(da~%2)"1 = (Da~'#)* (mod p).
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THEOREM 7.3 Ify # z° (mod p), then Bob will accept y as a valid signature
for = with probability 1/q.

R

write ¢ = o, d = oJ, z = oF,

y = of, where i, j, k,£ € Z, and all arithmetic is modulo p.

Me 3 g woys
* c=y*p% (modp) @W‘ ¢ Cs
d = z* a®? (mod p). |
This system is equivalent to the following system:
i = fey + ae; (mod q)
j = kej + €2 (mod g).
Now, we are assuming that

| y Z z° (mod p),

so it follows tha | I Q, ﬂ
t o £ # ak (mod q). dc"' k ‘J# a

e Q

d solves Yo [(872)
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