Hannah Miller Advanced Cryptography HW06 (EC and NAF) 2020-04-07

1 Show bijections for Bs and By

Let By, for k > 2 consist of all 0-1 strings of length k& with both ends equal to 1 (there are 2+~2
of them). Show explicitly two bijections: between 16 strings in Bg and their NAF representations,
and 32 strings in By and their NAF representations.

1.1 Solution

We show the bijections in the tables below. We also report the number of zeros in the original
encoding and the number of zeros in the NAF encoding. The last column shows the ratio of the
NAF zeros to the original zeros; for example, if there were 2 zeros in the original encoding and 3
zeros in the NAF encoding, then the ratio would be 3/2 = 1.50.

Ratios r in the range 1 < r < 2 are highlighted in yellow, and ratios » > 2 are highlighted in
green. Higher ratio is better since more zeros require fewer add operations in the double-and-add
algorithm. We see many green highlights, which means that the NAF encoding is a good, efficient
encoding for the double-and-add computation.

index original encoding NAF encoding original 0s NAF 0s NAF 0s / original 0s
0 100001 1 0 0 0 0 1 4 4 1.00
1 100011 1 0 01 0-1 3 3 1.00
2 100101 10 0 1 0 1 3 3 1.00
3 100111 1 0 1 0 0-1 2 3 1.50
4 101001 101 0 0 1 3 3 1.00
) 101011 1 0-1 0-1 0-1 2 3 1.50
6 101101 1 0-1 0-1 0 1 2 3 1.50
7 101111 1 0-1 0 0 O0-1 1 4

8 110001 1 0-1 0 0 0 1 3 4 1.33
9 110011 1 0-1 0 1 0-1 2 3 1.50
10 110101 1 0-1 0 1 0 1 2 3 1.50
11 110111 1 0 0-1 0 0-1 1 4

12 111001 1 0 0-1 0 0 1 2 4

13 111011 1 0 0 0-1 0-1 1 4

14 111101 1 0 0 0-1 0 1 1 4

15 111111 1 0 0 0 0 0-1 0 5

Table 1. The 16 strings in Bg.
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index original encoding NAF encoding original 0s NAF 0s NAF 0s / original Os
0 1000001 1 0 0 0 0 0 1 5 5 1.00

1 1000011 1 0 0 0 1 0-1 4 4 1.00

2 1000101 1 0 0 01 0 1 4 4 1.00

3 1000111 1 0 01 0 0-1 3 4 1.33

4 1001001 1 0 01 0 0 1 4 4 1.00

5 1001011 1 01 0-1 0-1 3 3 1.00

6 1001101 1 01 0-1 0 1 3 3 1.00

7 1001111 10100 0-1 2 4 2oy
8 1010001 1 01 0 0 0 1 4 4 1.00

9 1010011 1 01 0 1 0-1 3 3 1.00

10 1010101 1 01 0 1 0 1 3 3 1.00

11 1010111 1 0-1 0-1 0 0 -1 2 4 2o
12 1011001 1 0-1 0-1 0 O 1 3 4 1.33

13 1011011 1 0-1 0 0-1 0-1 2 4

14 1011101 1 0-1 0 0-1 0 1 2 4

15 1011111 1 0-1 0 0 0 O-1 1 5

16 1100001 1 0-1 0 0 0 0 1 4 5 1.25

17 1100011 1 0-1 0 0 1 O0-1 3 4 1.33

18 1100101 1 0-1 0 0 1 0 1 3 4 1.33

19 1100111 1 0-1 0 1 0 0-1 2 4 2000
20 1101001 1 0-1 0 1 0 O 1 3 4 1.33

21 1101011 1 0 0-1 0-1 0-1 2 4

22 1101101 1 0 0-1 0-1 0 1 2 4

23 1101111 1 0 0-1 0 O O-1 1 )

24 1110001 1 0 0-1 0 0 0 1 3 5 1.67

25 1110011 1 0 0-1 0 1 0-1 2 4

26 1110101 1 0 0-1 0 1 0 1 2 4

27 1110111 1 0 0 0-1 0 O-1 1 )

28 1111001 1 0 0 0-1 0 0 1 2 5

29 1111011 1 0 0 0 0-1 0-1 1 5

30 1111101 1 0 00 0-1 0 1 1 5

31 1111111 1 0 0 0 0 0 O0-1 0 6

Table 2. The 32 strings in By.
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2 Problem 2

Solve exercise 6.17 page 279 (ECIES). In (a) show the intermediate values of variables. This exercise
is not in edition 4 of the textbook. Edition 4 does not include the ECIES scheme, but a similar to
it cryptosystem 7.2 EC ElGamal. For this problem use the ECIES slide discussed in class (Figure 1
below).

Cryptosystem 6.2: Simplified ECIES

Let E be an elliptic curve defined over Z, (p > 3 prime) such that E contains a
cyclic subgroup H = (P) of prime order n in which the Discrete Logarithm
problem is infeasible.

Lt P=2Z,",C=(Zp x Z3) x Zp", and define

X={(E,P,m,Q,n): Q =mP}.

The values P; Q and n are the public key, and m € Z," is the private key.

For K = (E, P,m,@,n), for a (secret) random number k € Zj,", and for
z € Z,", define

ex (z, k) = (POINTCOMPRESS (kP), zz0 mod p),
where kQ = (zo, yo) and zq # 0.
For a ciphertext y = (y1, y2), where y3 € Zp x Zp and y € Z,', define

dx (y) = ya(zo) ™" mod p,

(20, yo) = m POINTDECOMPRESS (y1).

Figure 1. Elliptic curve integrated encryption scheme (ECIES) as discussed in-class.

Let E be the elliptic curve y? = 23 4+ 22 + 7 defined over Zs;. It can be shown that #E = 39
and P = (2,9) is an element of order 39 in E. The simplified ECIES defined on E has Zj; as its
plaintext space. Suppose the private key is m = 8.

(a) Compute @ = mP.
(b) Decrypt the ciphertext ((18,1),21), ((3,1),18), ((17,0),19), ((28,0),8).

(c) Assuming that each plaintext represents one alphabetic character, convert the plaintext into
an English word. Use the correspondence A = 1,...,7Z = 26 because 0 is not allowed in a
plaintext ordered pair.
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2.1 Solution
Part (a) Calculations' shown below; we find that Q = 8P = (8, 15).

operation exponent bit value point coordinates

initialize 1 (MSB) (2,9)
double 0 (10, 2)
double 0 (15, 8)
double 0 (LSB) (8, 15)

Table 3. Detailed computation of (Q = 8P for the given EC.

Part (b) Recall that k is not needed for decryption. The steps are:

(a) Perform point decompression on the tuple y; = (2/,9') (e.g. the first entry in the ciphertext
has Y1 = (187 1) = (I‘,,y,))-

(b) Multiply the decompressed tuple by the secret key m (where m = 8 in this exercise); this
gives the tuple (zg, yo).

(c) Compute x5! from the last step (we don’t need o).

(d) Compute (y2 - 5 ) mod p; this is the answer.

mP after decompression  z L decrypted text d

(15, 8) 29 20
(2,9) 16 9
(30, 29) 30 12
(14, 19) 20 5

Table 4. Computation details.

Part (c) This text spells TILE.

!Checked using http://christelbach.com/ECCalculator.aspx
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3 Compute 87P with the NAF representation of 87
Solve exercise 6.18 page 279 (7.19 page 307).

(a) Determine the NAF representation of the integer 87.

(b) Using the NAF representation of 87, use Algorithm 6.5 to compute 87P, where P = (2,6) is a
point on the elliptic curve y? = 23 4+ = + 26 defined over Zi97. Show the partial results during
each iteration of the algorithm.

3.1 Solution
Part (a)

87 in binary : 1 01 0 1 1 1
NAF representation : 1 0 -1 0 -1 0 0 -1

Part (b) The final answer is Q = 87P = (102,88). Computation? steps are shown below.

operation index i NAF value coordinates of )
initialize 0 (MSB) 1 (2,6)
double 1 0 (118, 80)
double 2 -1 (82, 13)
also subtract 2 -1 (68, 57)
double 3 0 (85, 119)
double 4 -1 (99, 115)
also subtract 4 -1 (87, 116)
double 5 0 (91, 18)
double 6 0 (102, 39)
double 7 (LSB) -1 (54, 119)
also subtract 7 (LSB) -1 (102, 88)

Table 5. Computation of 87P for the given EC.

2Checked using http://christelbach.com/ECCalculator.aspx
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4 Prove that the NAF representation is unique

(Optional) Prove that the NAF representation is unique. You need to show that two distinct NAF
strings cannot encode the same integer.

Proof. The NAF encoding uses the equality (for i > j) that
20 427l 44 9d =2l _9J, (1)

We show that two NAF strings encode the same integer if and only if the NAF strings are identical.

Forward direction. If two NAF strings encode the same integer, then the NAF strings are
identical. This is easy to see by Equation (1) since the NAF conversion algorithm transforms blocks
of the form 01...1 to the form 10...—1 where the ... are a continuous (and possibly empty) block
of 1s. An integer has only one binary representation, so NAF conversion will produce the same
output string.

Backward direction. If two NAF strings are identical, then the NAF strings encode the same
integer. We can think of an NAF string as a set of orthogonal basis vectors {0, 2, 4,8, 16, ...} with
possible coefficients {—1,0,1}. Since the NAF representation requires coefficients of 0 between the
coefficients of —1 and 1, when we sum the basis vector components of the NAF representation, it is
impossible to encode two different integers with the same NAF string. O

5 Source code

Listing 1. hw06.sage

# Advanced Crypto HWO6 // Hannah Miller // 2020-04-07
import numpy as np

import computeEC as ec # custom module for this homework
# == Problem 1 ==

def prettyprint(a):

""'"Given array a, return a nicely formatted string for pretiy
printing, the count of zeros in a, and the count of ones in a.

1

fmtstr = ''.join(['{:3d}'.format(x) for x in al)
zeros = sum(a == 0)
ones = sum(a == 1)

return fmtstr,zeros,ones

def s2naf(a):
""'Given an array a of 0s and 1s, convert the string into its NAF
(non-adjacent form) and return the NAF.

P

# Walk through the string right-to-left
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i = len(a) - 1 # initialize index into the array
while i > O:
j =1 # update
while a[i] == 1: # get a block of 1s
i=1-1 # decrement to "walk up" the MSBs
if j-i > 1: # do not update the string '...010...'
ali]l = 1 # looks wrong but we scan right-to-left so this is correct

al(i+1):3] = 0
aljl = -1

while a[i] == 0: # skip over the next block of 0Os
i=1-1 # decrement to "walk up" the MSBs

return a # a 1s now in NAF

def run_all_B(k_input):
k = k_input - 2

print('index & original encoding & NAF encoding & a zeros & NAF zeros

& NAF zeros / a zeros \\\\')
for num in range(2*xk):

b = bin(num) [2:].2zfill(k) # padded binary value b

s = '01{}1'.format(b) # string s with dummy 0 at the beginning for later
a = np.array([int(x) for x in s]) # convert to an array a of integers
a_str,a_zeros,a_ones = prettyprint(all:]1) # chop off dummy 0

naf = s2naf(a) # NAF of the string s
if naf[0] == 0: naf = naf[1:] # chop off dummy 0 if needed
naf_str,naf_zeros,naf_ones = prettyprint(naf)

# Print the results
print('{:2d} & {} & {3 & {} & {} & {:.2f} \\\\'.format(

num, a_str, naf_str, a_zeros, naf_zeros, naf_zeros/a_zeros))

#run_all_B(6)
#run_all_B(7)

f# ================================================================
# == Problem 2 ==

p =31

a= 2

b= 7

E = EllipticCurve(GF(p), [a,b])
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72 | #print (E. cardinality())

73

74 | # for pt in E.points():

75 | # if pt.order() == 39:

76 | # print (pt, pt.order())

7

78

79 |# -- Part (a) --

80

81 |def compute8x(P):

82 m =8 # private key

83 m_bin = [1,0,0,0] # m in binary
84

85 Q =P # initialize

86 i=0

87 #print ('initialize' ,m_bin[i],q)
88 for i in range(1l,len(m_bin)):

89 Q = ec.compute_x3y3(p,Q,Q,2) # double; § = 2§
90 #print ('double’,m_bin[i],q)
91

92 if m_bin[i] == 1:

93 Q = ec.compute_x3y3(p,P,Q,a) # add; § = {+P
94 #print ('add’,m_bin[i],q)
95

96 #print (' final answer', ()

97 return(Q)

98

99 |P = (2,9)

100 | compute8x(P)

101

102

103 | # -- Part (b) --

104 |def pointdecompress(yl):

105 x0,y0 = y1 # extract from tuple
106 p =31

107 z = (x0%*3 + 2%xx0 + 7) % p

108 #print('z =',2)

109

110 # Since (pt1)/4 = 8 is an integer, then sqrt(z) = z°8 mod p
111 y = (z%x8) % p

112 #print('y =',y)

113

114 if y == y0o % 2:

115 return (x0,y)

116 else:

117 return (x0,p-y)

118

119 |ciphertext = [((18,1),21), ((3,1),18), ((17,0),19), ((28,0),8)]
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print ('$mP$ after decompression & $x_0"{-1}$ & decrypted text $d$ \\\\")
for ¢ in ciphertext:

yl,y2 = ¢ # yl 4s the tuple (z0,y0)

P = compute8x(pointdecompress(yl))

x0,y0 = P

x0inv = ec.compute_inverse(p,x0)

d = (y2*x0inv) % p # decrypted text

print("{} & {} & {F¥ \\\\'.format(P,xOinv,d))

== Problem 3 ==
# -- Part (a) --

num = 87 # the input integer

b = bin(num) [2:] # padded binary value b

s = '0{}'.format(b) # string s with dummy 0 for later

a = np.array([int(x) for x in s]) # convert to an array a of integers
a_str,a_zeros,a_ones = prettyprint(a)

naf = s2naf(a) # NAF of the string s
if naf[0] == 0: naf = naf[1:] # chop off dummy 0 if needed
naf_str,naf_zeros,naf_ones = prettyprint(naf)

# print(a_str)
# print (naf_str)

# -- Part (b) --

p = 127

a=1

P = (2, 6)
minusP = (2,-6)

#print ('operation & <indexr $1$ & NAF value & coordinates of $§ \\\\')

Q=P # wnitialize
for i in range(l,len(naf)): # scan MSB to LSB
Q = ec.compute_x3y3(p,Q,Q,a) #§ <- 24
#print ('double & {} & {} & {} \\\\'.format(i,nafli],q))

if naf[i] == 1:
Q = ec.compute_x3y3(p,Q,P,a) # § <- § + P
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#print('also add & {} & {} & {} \\\\'.format(<,naf[<],q))
if naf[i] == -1:
Q = ec.compute_x3y3(p,Q,minusP,a) # § <- § - P
#print ('also subtract & {} & {} & {} \\\\'.format(<,nafl<],q))

#print (§)

Listing 2. computeEC.py

# These definitions are from page 258 of Stinson
import math

def compute_inverse(p,t):

# Compute inverse of t mod p by brute-force. The elliptic curves
# on the homework are small enough that this is OK.
inv = 0 # 2nitialize
for i in range(p):

x = (t*¥i) % p

if x==1:

inv = i

return inv

def compute_slope(p,P,Q,a):
# Step 1: Compute the slope of the line L.

if P ==Q: # for point doubling when P={
(x1,y1) =P
inv = compute_inverse(p,2*yl) # this is (2*yl)#**(-1)
#print (inv)
return ( (3*x1*x2 + a) * inv ) % p
else:
(x1,y1) =P
(x2,y2) = Q
if x2-x1 == 0:

print('no inverse exists!')
return(math.nan)

else:
inv = compute_inverse(p,x2-x1)
return ( (y2-y1) * inv ) % p

def compute_x3(p,slope,P,Q):
# Step 2: Compute 3. The slope ©s used.
(x1,y1) =P
(x2,y2) = Q
return (slope**2 - x1 - x2) % p

def compute_y3(p,slope,P,x3):
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# Step 3: Compute y3. This uses both the slope and z3.
(x1,y1) =P
return (slope*(x1-x3) - y1) % p

def compute_x3y3(p,P,Q,a):
# Compute (z3,y3) = (z1,y1) + (z2,y2).

#print (P, {)
(x1,y1) =P
(x2,y2) =Q

slope = compute_slope(p,P,Q,a)

x3 = compute_x3(p,slope,P,Q)

y3 = compute_y3(p,slope,P,x3)

#print ('slope, {:02d}, =3, {:02d}, y3, {:02d}'.format(slope,z3,y3))
#return (expand(x3),expand(y3))

return (x3,y3)

HARHHARHHARHHARHAAGRHARHHARRHARRHARRHARRHARRHARRHARRHARRHARRHAAS
# 2020-03-24 -- test point doubling

p=11

a= 1

#P = (2,7)
P = (8,3)
R=P

# print(1,P)

# for i in range(12):

# R = compute_z3y3(p,P,R,a)

# (z,y) = R

# print('4, {:2d}, P, ({:2d}, {:2d})'.format(i+2,z,y))

2020-04-07
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