
Cryptography

pieces from work by Gordon Royle

The set-up

Cryptography is the mathematics of devising

secure communication systems, whereas

cryptanalysis is the mathematics of breaking

such systems.

We suppose that Alice employs some

encryption system E, and encrypts the

message to form the ciphertext C

C = E(M)

On receipt of the ciphertext, Bob then

decrypts the message recovering the plaintext.

M = D(C) = D(E(M))

Cryptography

Plaintext M ATTACK

Encryption C = E(M) Caesar(3)

Ciphertext C DWWDFN

Transmission through insecure channel

Decryption M = D(C) Caesar(-3)

Message M ATTACK

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Some attacks

Eavesdropping An attacker may learn

something from the message passing from

Alice to Bob.

Impersonation An attacker may wish to

impersonate someone — for example a student

at Dartmouth University sent forged electronic

mail messages to his entire classs claiming that

an exam was cancelled.

Alteration An attacker may intercept a

message in transit, and try to change it to read

something different.

It is widely held that it is necessary to be an

excellent cryptanalyst in order to be a good

cryptographer.

The key space

26 for shift cipher.

One way to increase the key space is to use a

key phrase instead. Suppose that the

key-phrase is a word, say FIZZLEBOP. For better

subsitution cipher write down a copy of the

alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Underneath, write down the key phrase with

repeated letters deleted and then the

remainder of the alphabet.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

FIZLEBOPACDGHJKMNQRSTUVWXY

Exponentiation

Compute 1116 (it is 45949729863572161) and

then take this value modulo n.

However we can compute as follows

112 ≡ 11× 11 ≡ 121 (mod 233)

113 ≡ 11× 121 ≡ 166 (mod 233)

114 ≡ 11× 166 ≡ 195 (mod 233)

and so on . . .

This naive algorithm takes 16 operations to

compute the 16th power of a number.

Repeated squaring

We can be much more efficient if we observe

that

x16 = (x8)2

Therefore we can proceed by

112 ≡ 11× 11 ≡ 121 (mod 233)

114 ≡ 121× 121 ≡ 195 (mod 233)

118 ≡ 195× 195 ≡ 46 (mod 233)

1116 ≡ 46× 46 ≡ 19 (mod 233)

therefore taking only 4 operations to compute

the value.

Naturally it will only be on rare occasions

where the exponent is an exact power of 2.

Nevertheless it is easy to extend the idea

behind the repeated squaring to accommodate

any exponent.

Exponentiation

Suppose we have to compute ga (mod n).

Then let

(bk, bk−1, bk−2, . . . , b0)

be the binary expansion of the exponent a.

Then start with the value d = 1 and read the

binary expansion of a from high-order bit to

low-order bit.

At each stage

d← d2 (mod n)

and if the bit is a 1, perform an additional

operation

d← d× g (mod n)

After reading each bit the variable d will hold

the required value.

Example

We will compute 1125 (mod 233).

The binary expansion of 25 is 11001 so the

procedure is as follows:

Step Bit Square Multiply
1 1 1 11
2 1 121 166
3 0 62
4 0 116
5 1 175 61

Therefore we can compute ga (mod n) in only

lg a steps, each of which involves at most two

modular multiplications.

Euclid’s algorithm

Euclid’s algorithm for finding the greatest

common divisor of two integers is probably the

world’s earliest surviving algorithm.

Then we can express a in the following manner

a = qb+ r

where q is the quotient on dividing a by b and

r < b is the remainder.

Now d = gcd(a, b) must divide b and r, and

moreover it is easy to see that any number

that divides b and r must also divide a.

Therefore

d = gcd(a, b) = gcd(b, r)

Euclid’s algorithm continued

This yields a trivial recursive function:

function gcd(a, b)

if b = 0 return a

else return gcd(b, a mod b)

An example is trying to compute gcd(450,42).

Call a = q.b + r
gcd(450,42) 450 = 10.42 + 30
gcd(42,30) 42 = 1.30 + 12
gcd(30,12) 30 = 2.12 + 6
gcd(12,6) 12 = 2.6 + 0
gcd(6,0)

and so gcd(450,42) = 6.

Now, in addition to simply computing the

greatest common divisor d of a and b, we will

also need to express d as a linear combination

of a and b — that is, we need to find x and y

such that

d = xa+ yb

Extended Euclid formally

Let us create an extended version of the

function gcd(a, b) that returns a triple (d, x, y)

such that d = gcd(a, b) = xa+ yb.

if b = 0

return (a,1,0)

The recursive case requires a thought:

a = qb+ r

and we know (from the recursive solution) that

d = x′b+ y′r

then we have

d = x′b+ y′(a− qb) = y′a+ (x′ − qy′)b

Therefore

(d, x′, y′)← gcd(b, a mod b)

(d, x, y)← (d, y′, x′ − y′ba/bc)
return(d, x, y)

The RSA cryptosystem

Devised by Rivest, Shamir, Adleman - 1978

1. Select two large prime numbers p and q

(100 or more digits).

2. Compute the product n = pq and the value

φ(n) = (p− 1)(q − 1).

3. Choose a small odd integer e that is

relatively prime to φ(n).

4. Use Euclid’s extended algorithm to solve the

equation ed ≡ 1 (mod φ(n)).

5. The public key is (n, e), which can be

distributed, and the private key is d.

Using the cryptosystem

Suppose you wish to send Bob the message m.

Then you look up Bob’s public key (n, e) and

compute

c = me (mod n)

When Bob receives the message c he computes

cd (mod n)

using his secret key d.

So Bob computes

cd = med = m1+kφ(n) = m(mφ(n))k

Now, some elementary number theory tells us

that

xφ(n) ≡ 1 (mod n)

for any x and so we get the result that

med ≡ m (mod n).

Breaking RSA

The security of RSA depends (probably) on

the difficulty of factoring the integer n. If you

could somehow take n and compute the

factorization n = pq then you could compute

φ(n) and hence the decryption key d.

These developments in the last decades have

thrust the rather austere and esoteric branch

of mathematics known as number theory into

the forefront of applied mathematics and

computer science, as people seek to develop

algorithms to factor numbers or to prove that

it is difficult.

It is interesting to note that the problem of

factoring numbers is NOT known to be

NP-hard.

RSA-129

In 1977, Rivest, Shamir and Adleman wrote a

paper in Scientific American in which they

published the following 129 digit number (this

is about 425 bits).

11438 16257 57888 86766 92357 79976 14661

20102 18296 72124 23625 62561 84293 57069

35245 73389 78305 97123 56395 87050 58989

07514 75992 90026 87954 3541

This was an example of a possible modulus for

use in RSA and they promised to pay $100 to

the first person to factor this number — they

expected it not to be factored in their lifetime.

However a team from Bellcore and MIT

devised a factoring algorithm that could be

performed in many hundreds of small parts.

Squeamish Ossifrage

Date: Wed, 27 Apr 94 22:03:30 PDT

To: Fun People

Subject: R.S.A. 129 falls

Using volunteers on the Internet, who

downloaded portions of the problem using ftp

and ran them on otherwise idle machines, an

international effort using more than 1600

machines for 8 months managed to factor the

number:

The two factors are

34905 29510 84765 09491 47849 61990 38981

33417 76463 84933 87843 99082 0577

and

32769 13299 32667 09549 96198 81908 34461

41317 76429 67992 94253 97982 88533

Decoding the phrase

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

RSA cracked!!

This feat was widely reported in the popular

press - in particular one issue of the New York

Times had the factorization printed across the

entire front page.

One unfortunate side-effect of popular

coverage was that the reports often mutated

from “RSA-129 has been cracked” into “RSA

has been cracked”.

Factoring RSA-129 just means that one

particular key has been cracked. Of course if

you were unlucky enough to using that

particular value of n as your public key, then

you would have to change.

In general however, it means that if you have a

425-bit modulus, then you can expect it to

take 1600 machines about 8 months to crack.

Simply changing your modulus to a 1024-bit

modulus makes a factorization attack

completely infeasible (at the moment).

