EC Integrated encryption scheme

Cryptosystem 6.2: Simplified ECIES

Let E be an elliptic curve defined over \mathbb{Z}_p (p > 3 prime) such that E contains a cyclic subgroup $H = \langle P \rangle$ of prime order n in which the Discrete Logarithm problem is infeasible.

Let $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{C} = (\mathbb{Z}_p \times \mathbb{Z}_2) \times \mathbb{Z}_p^*$, and define

$$\mathcal{K} = \{(E, P, m, Q, n): Q = mP\}.$$

The values P, Q and n are the public key, and $m \in \mathbb{Z}_n^*$ is the private key. For K = (E, P, m, Q, n), for a (secret) random number $k \in \mathbb{Z}_n^*$, and for $x \in \mathbb{Z}_p^*$, define

$$e_K(x, k) = (POINTCOMPRESS(kP), xx_0 \mod p),$$

where $kQ = (x_0, y_0)$ and $x_0 \neq 0$.

For a ciphertext $y=(y_1,y_2)$, where $y_1\in\mathbb{Z}_p\times\mathbb{Z}_2$ and $y_2\in\mathbb{Z}_p^*$, define

$$d_K(y) = y_2(x_0)^{-1} \mod p,$$

where

 $(x_0, y_0) = m \text{ POINTDECOMPRESS}(y_1).$