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1. addition is closed on the set E,
2. addition is commutative,
+ 3. O is anidentity with respect to addition, and
4. every pointon E has an inverse with respect to addition.
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THEOREM 6.1 Let E be an elliptic curve defined over Z,, where p is prime and
p > 3. Then there exist positive integers ny and ny such that (E, +) is isomorphic
10 L, X Ton,. Further, ns | nyand ng | (p— 1).

Note that n, = 1 is allowed in the above theorem. In fact, ns = 1 if and only
if ' is a cyclic group. Also, if #F is a prime, or the product of distinct primes,
then £ must be a cyclic group.

[n any event, if the integers n; and n, are computed, then we know that (E. +)
has a cyclic subgroup isomorphic to Z,, that can potentially be used as a setting
for an ElGamal Cryptosystem.
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Properties of Elliptic Curves

Hasse bound

P+1-2p<#E<p+1+2/p
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THEOREM 6.1 Let E be an elliptic curve defined over Z,, where p is prime and
p > 3. Then there exist positive integers ny and na such that (E, ) is isomorphic
10 Zn, X Zp, Further nay |nyandng | (p—1).
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Schoof’s algorithm

From Wikipedia, the free encyclopedia

School’s algerithm, first described by R. Schoof in 1985, allows one to calculate the number of points on an elliptic
curve over a finite field and is used mostly in elliptic curve cryptography.

From Hasse’s theorem on elliptic curves the number of point on a curve is roughly known:

|E(F,)| = g +1+2/q.

so 1o find the exact number it is enough to find it modulo R > 4ﬁ . Schoof’s algorithm calculates
for several small primes r,, where H r = R . and uses the Chinese remainder theorem to combine the results.

The running time of the original algorithm is proportional to q8 and with several improvements can be reduced to O(qﬁ),
which is adequate for g <256 ona PC.

The algorithm has been extended by Noam Elkies and A. O. L. Atkin to give the Schoof-Elkies-Atkin algorithm, which
has only O(q5 ) time complexity and thus is always faster.

References

« R. Schoof, Elfiptic curves over finite fields and the computa}ian of square roots mod p, Mathematics of
Computation, Volume 44, 1985.

Implementations

Scveral algorithms were implemented in C++ by Mike Scott and are available with source code

(ftp://fip.compapp.dcu.ie/pub/crypta’) . The implementations are free (no terms, no conditions), but they use MIRACL
(http://indigo.ie/~mscott) library which is only free for non-commercial use. Note that (unmodified) programs may be
used to generate curves for commercial use. There are

» Schoofs algorithm implementation (ftp://ftp.compapp.dcu.ie/pub/crypto/schoof.cpp) for E (F p) with prime p.
» Schoof's algorithm implementation (ftp://ftp.compapp.dcu.ie/pub/crypta/schoof2.cpp) for F (F om ) .



B Implementations in Hardware and Software

* Elliptic curve computations usually regarded as
consisting of four layers:

® Basic modular arithmetic operations are
computationally most expensive

* Group operation implements point doubling
and point addition

® Point multiplication can be implemented
using the Double-and-Add method

* Upper layer protocols like ECDH and
ECDSA i '
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modular arithmetic operations, such as = X,
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* Modular addition and subtraction
* Modular multiplication

® Maodular inversion

2124 Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl




Let ¢ be an integer. A signed binary representation of ¢ is an equation of the

form
. -1
c= Z c,-2,’,

where ¢; € {~1,0,1} for all i. In general, there will be more than one signed
binary representation of an integer ¢. For example, we have that

11=8+4+2+1=16—4-1,

SO
(cév C3,C2,C1, CO) = (03 1: 0: 1: 1) or (1: 01 '_]-: 01 _1)

are both signed binary representations of 11.

Algorithm 6.5: DOUBLE-AND-(ADD OR SUBTRACT)(P, (¢¢-1,..-,Co))

Q+0

fori +— £—1downto 0

(Q «2Q

ifc;=1 -
do< thenQ+ Q@+ P
elseifc; = -1

| thenQ + Q- P

return (Q)




242l 4. o =g _gd, 17&‘
01Nl —> 10000~
&

15 o1 ) 0 B0 a1 el S ) ] 1 1
1° o153 = 18 0= SORE]S=] ST S 0 04 =1
U ST N LW ) SRS TR () S () 2 SO 0 -1

1 0 0 0-1 0 1 0 0-1 0 0 -1

Hence the NAF representation of
(1,1,1,1,0,0,1,1,0,1,1, 1)

is
(1,0,0,0,-1,0,1,0,0,-1,0,0,—-1).
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NIST recommended a certain set of elliptic curves for government use.
This set of curves can be divided into two classes: curves over a prime field

GF(p) and curves over a binary field GF(2™). The curves over GF(p) are of the
form

Fe-mxeh 192, 224, 256, 38y, 52|

W|th b random while the curves over GF(2’") are elther of the form

y2+xy xw+x2+b ,63 233 &3 ‘/0? 57/

with b random or Koblitz curves. A Koblitz curve has the form

Yo+ xy=x3+ax®+1

witha=0or 1.

=




+wo NIST
Kohlstz Ccumves
K163 £‘D th 6“[95:3 -Fl'elds

=1
G x = 2fel3cO537bbcllacaal7d793ded4e6d5e5¢94ece8

h_y 289070fb05d38ff58321f2e800536d538ccdaa3d9
p 5846006549323611672814741753598448348329118574063
th 2

= t233 + t°74 + 1
= 20000000000000000000000000C000000000000040000C00000CNRORLAO1
=0
G X = 17232ba853a7e731at129f221ff4149563a419¢26bf50a4c9d6eefadbl26
= 1db537dece819b7f70f555a67c427a8¢cd9bf18aeb9b56ePLcl11056faeba3l
= 3450873173395281893717377931138512760570940988862252126328087024741
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Meneaes- Vanstone Eliptic Curve Cryplesystem

Let E be an clliptic curve defined over Z, (» > 3 prime) such that
E contains a cyclic subgroup H is which the discrete log problem is
intractible.

LetP =2Z," xZ,°,C = E x Zp* x Z,°, and define
K={(FEa,aep):8=aa},
where a € E. The values a and £ age public, and a is secret.

For K = (E,a, e, #), for a (secret) random number k € Zyy), and for
= (31,12) € Z,' X Z,‘.deﬁue

CK(:.l k) S (”1 ’13,1)1

where
w = ka,
(c1,c2) = kB,
n=cazymedp, and
= c2z2 mod p.

For a ciphertext y = (w0, ¥1, 1n), defime

dx(y) = (nier™" mod p, 3262~ mod p),
where

ayw = (1,¢2).
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Cryptosystem 6.2: Simplified ECIES

Let E be an elliptic curve defined over Z, (p > 3 prime) such that E contains a
cyclic subgroup H = {P) of prime order n in which the Discrete Logarithm

problem is infeasible.
LetP=2,",C = (Zp x Zs) x Zp", and define

' K:{(E,P,m,Q,n):Q:mP}.

The values P, Q and n are the public key, and m € Zy," is the private key.

For K = (E, P,m,@Q,n), for a (secret) random number k& € Z,", and for
z € Zy , define

ek (z, k) = (POINTCOMPRESS (k P), 220 mod p),
where kQ = (:120, yo) and zg 75 0.
For a ciphertext y = (y1,y2), where i1 € Zp X Zg and yz € Zy' . define

dx (y) = ya(zo)™* mod p,

(20, yo) = m POINTDECOMPRESS (y1).



Diffie-Hellman key exchange. Users A and B want to share a common key
Using a publicly known curve E and point P they do the following. User A choose
a number £4 and sends the point Q = t4 P to user B. User B chooses a number ¢;

and sends R = tp P to user A. User A then computes thekey K = taR =1ta(tBP)-
(t4t3)P. User B can also compute the key K from tgQ =tp(taP) = (tats)P.



Bit Security of Discrete Logarithms

Problem 6.2: Discrete Logarithm ith Bit
Instance: I = (p,a,B,i), where p is prime, & € Z," is-a primitive
element, § € Z,*, and i is an integer such that 1 < i <

[ogz(p — 1)]. .
Question: Compute L;(#), which (for the specified a and p) denotes the
' 1th least significant bit in the binary representation of log,, ;3.

QR(p) = {z* mod p: z € Z,}.

-
1QR(p)| == 2L,

QR(p) = {o* mod p: 0 < i < (p—3)/2}-

Li{f) = { ! 'f;,mﬂf 21 (mod p)
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Algonthm 6.6: L, ORACLEDISCRE'I‘ELOGARITHM(p, a, )

external Ll, ORACLELz

zo ¢ Ly(F)

B + B/a* mod p

11

whileﬂ #F1
[ z; +~ ORACLEL;(f)
v ﬁ(""”/‘ modp -
lle('n =i

¢ { thenf v
else 8 - p—~1

B + B/a" mod p
T+ 1+1




