Elliptic Curves in Compto

- 1. addition is closed on the set E,
- 2. addition is commutative,
- 3. O is an identity with respect to addition, and
 - 4. every point on E has an inverse with respect to addition.

missing: associativity
(messy proof omitted)

special case (-P) + (P+Q) = Q

THEOREM 6.1 Let E be an elliptic curve defined over \mathbb{Z}_p , where p is prime and p > 3. Then there exist positive integers n_1 and n_2 such that (E, +) is isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Further, $n_2 \mid n_1$ and $n_2 \mid (p-1)$.

Note that $n_2 = 1$ is allowed in the above theorem. In fact, $n_2 = 1$ if and only if E is a cyclic group. Also, if #E is a prime, or the product of distinct primes, then E must be a cyclic group.

In any event, if the integers n_1 and n_2 are computed, then we know that (E, +) has a cyclic subgroup isomorphic to \mathbb{Z}_{n_1} that can potentially be used as a setting for an *ElGamal Cryptosystem*.

 Z_4 VS $Z_2 \times Z_2$

Properties of Elliptic Curves

Hasse bound

$$p+1-2\sqrt{p} \le \#E \le p+1+2\sqrt{p}$$
.

THEOREM 6.1 Let E be an elliptic curve defined over \mathbb{Z}_p , where p is prime and p > 3. Then there exist positive integers n_1 and n_2 such that (E, +) is isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Further, $n_2 \mid n_1$ and $n_2 \mid (p-1)$.

Schoof's algorithm

From Wikipedia, the free encyclopedia

School's algorithm, first described by R. School in 1985, allows one to calculate the number of points on an elliptic curve over a finite field and is used mostly in elliptic curve cryptography.

From Hasse's theorem on elliptic curves the number of point on a curve is roughly known:

$$|E(\mathbf{F}_q)| = q + 1 \pm 2\sqrt{q}.$$

so to find the exact number it is enough to find it modulo $R>4\sqrt{q}$. Schoof's algorithm calculates

$$q+1-|E(\mathbf{F}_q)|\pmod{r_i}$$

for several small primes r_i , where $\prod r_i = R$, and uses the Chinese remainder theorem to combine the results.

The running time of the original algorithm is proportional to q^8 and with several improvements can be reduced to $O(q^6)$, which is adequate for q < 256 on a PC.

The algorithm has been extended by Noam Elkies and A. O. L. Atkin to give the Schoof-Elkies-Atkin algorithm, which has only $O(q^5)$ time complexity and thus is always faster.

References

 R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Mathematics of Computation, Volume 44, 1985.

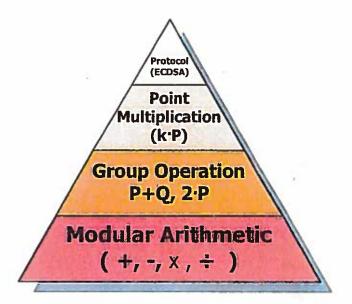
Implementations

Several algorithms were implemented in C++ by Mike Scott and are available with source code (ftp://ftp.compapp.dcu.ie/pub/crypto/). The implementations are free (no terms, no conditions), but they use MIRACL (http://indigo.ie/~mscott/) library which is only free for non-commercial use. Note that (unmodified) programs may be used to generate curves for commercial use. There are

- Schoof's algorithm implementation (ftp://ftp.compapp.dcu.ie/pub/crypto/schoof.cpp) for $E({f F}_p)$ with prime p.
- School's algorithm implementation (ftp://ftp.compapp.dcu.ie/pub/crypto/school2.cpp) for $E({f F}_{2^m})$.

Implementations in Hardware and Software

- Elliptic curve computations usually regarded as consisting of four layers:
 - Basic modular arithmetic operations are computationally most expensive
 - Group operation implements point doubling and point addition
 - Point multiplication can be implemented using the Double-and-Add method
 - Upper layer protocols like ECDH and ECDSA
- Most efforts should go in optimizations of the modular arithmetic operations, such as
 - Modular addition and subtraction
 - Modular multiplication
 - Modular inversion



Let c be an integer. A signed binary representation of c is an equation of the form

$$c = \sum_{i=0}^{\ell-1} c_i 2^i,$$

where $c_i \in \{-1, 0, 1\}$ for all i. In general, there will be more than one signed binary representation of an integer c. For example, we have that

$$11 = 8 + 2 + 1 = 16 - 4 - 1$$

SO

$$(c_4, c_3, c_2, c_1, c_0) = (0, 1, 0, 1, 1)$$
 or $(1, 0, -1, 0, -1)$

are both signed binary representations of 11.

Algorithm 6.5: DOUBLE-AND-(ADD OR SUBTRACT)
$$(P, (c_{\ell-1}, \ldots, c_0))$$

$$Q \leftarrow 0$$
for $i \leftarrow \ell - 1$ downto 0

$$\begin{cases} Q \leftarrow 2Q \\ \text{if } c_i = 1 \\ \text{then } Q \leftarrow Q + P \\ \text{else if } c_i = -1 \\ \text{then } Q \leftarrow Q - P \end{cases}$$
return (Q)

$$2^{i} + 2^{i-1} + \dots + 2^{j} = 2^{i+1} - 2^{j},$$

011111 -> 10000-1

Hence the NAF representation of

is

$$(1,0,0,0,-1,0,1,0,0,-1,0,0,-1).$$

Obtaining Non Adjacent From

unique

binary L + 1/2
NAF L + 4/3
doubles adds

NIST recommended a certain set of elliptic curves for government use. This set of curves can be divided into two classes: curves over a prime field GF(p) and curves over a binary field $GF(2^m)$. The curves over GF(p) are of the form

$$y^2 = x^3 - 3x + b$$

192, 224, 256, 384, 521

with b random, while the curves over $GF(2^m)$ are either of the form

$$y^2 + xy = x^3 + x^2 + b$$

163, 233, 283, 409, 571

with b random or Koblitz curves. A Koblitz curve has the form

$$y^2 + xy = x^3 + ax^2 + 1$$

with a = 0 or 1.

two NIST Koblitz Curves in binary Galois fields

K163

K233

STANDARDS FOR EFFICIENT CRYPTOGRAPHY

SEC 2: Recommended Elliptic Curve Domain Parameters

Certicom Research

Contact: Daniel R. L. Brown (dbrown@certicom.com)

January 27, 2010 Version 2.0

©2010 Certicom Corp.

License to copy this document is granted provided it is identified as "Standards for Efficient Cryptography 2 (SEC 2)", in all material mentioning or referencing it.

E-masking plaintext

Menezes-Vanstone Elliptic Curve Cryptosystem

Let E be an elliptic curve defined over \mathbb{Z}_p (p > 3 prime) such that E contains a cyclic subgroup H in which the discrete log problem is intractible.

Let $\mathcal{P} = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$, $C = E \times \mathbb{Z}_p^* \times \mathbb{Z}_p^*$, and define

$$\mathcal{K} = \{ (E, \alpha, a, \beta) : \beta = a\alpha \},\$$

where $\alpha \in E$. The values α and β are public, and α is secret.

For $K = (E, \alpha, \alpha, \beta)$, for a (secret) random number $k \in \mathbb{Z}_{|H|}$, and for $x = (x_1, x_2) \in \mathbb{Z}_p^{\bullet} \times \mathbb{Z}_p^{\bullet}$, define

$$e_K(x,k)=(y_0,y_1,y_2),$$

where

$$y_0 = k\alpha,$$
 $(c_1, c_2) = k\beta,$
 $y_1 = c_1x_1 \mod p,$ and
 $y_2 = c_2x_2 \mod p.$

For a ciphertext $y = (y_0, y_1, y_2)$, define

$$d_K(y) = (y_1c_1^{-1} \mod p, y_2c_2^{-1} \mod p),$$

where

$$ay_0 = (c_1, c_2).$$

EC Integrated encryption scheme

Cryptosystem 6.2: Simplified ECIES

Let E be an elliptic curve defined over \mathbb{Z}_p (p > 3 prime) such that E contains a cyclic subgroup $H = \langle P \rangle$ of prime order n in which the Discrete Logarithm problem is infeasible.

Let $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{C} = (\mathbb{Z}_p \times \mathbb{Z}_2) \times \mathbb{Z}_p^*$, and define

$$\mathcal{K} = \{(E, P, m, Q, n): Q = mP\}.$$

The values P, Q and n are the public key, and $m \in \mathbb{Z}_n^*$ is the private key. For K = (E, P, m, Q, n), for a (secret) random number $k \in \mathbb{Z}_n^*$, and for $x \in \mathbb{Z}_p^*$, define

$$e_K(x, k) = (POINTCOMPRESS(kP), xx_0 \mod p),$$

where $kQ = (x_0, y_0)$ and $x_0 \neq 0$.

For a ciphertext $y=(y_1,y_2)$, where $y_1\in\mathbb{Z}_p\times\mathbb{Z}_2$ and $y_2\in\mathbb{Z}_p^*$, define

$$d_K(y) = y_2(x_0)^{-1} \mod p,$$

where

 $(x_0, y_0) = m \text{ POINTDECOMPRESS}(y_1).$

Diffie-Hellman key exchange. Users A and B want to share a common key Using a publicly known curve E and point P they do the following. User A choose a number t_A and sends the point $Q = t_A P$ to user B. User B chooses a number t_A and sends $R = t_B P$ to user A. User A then computes the key $K = t_A R = t_A (t_B P) = (t_A t_B) P$. User B can also compute the key K from $t_B Q = t_B (t_A P) = (t_A t_B) P$.

Bit Security of Discrete Logarithms

Problem 6.2: Discrete Logarithm ith Bit

Instance: $I = (p, \alpha, \beta, i)$, where p is prime, $\alpha \in \mathbb{Z}_p^*$ is a primitive

element, $\beta \in \mathbb{Z}_p^*$, and i is an integer such that $1 \leq i \leq$

 $\lceil \log_2(p-1) \rceil$.

Question: Compute $L_i(\beta)$, which (for the specified α and p) denotes the

ith least significant bit in the binary representation of $\log_{\alpha} \beta$.

$$QR(p) = \{x^2 \bmod p : x \in \mathbb{Z}_p^*\}.$$

$$|\mathsf{QR}(p)| = \frac{p-1}{2}.$$

$$QR(p) = \{\alpha^{2i} \mod p : 0 \le i \le (p-3)/2\}.$$

$$L_1(\beta) = \begin{cases} 0 & \text{if } \beta^{(p-1)/2} \equiv 1 \pmod{p} \\ 1 & \text{otherwise.} \end{cases}$$

```
\log_\alpha\beta=\sum_{i\geq 0}x_i2^i
```

```
Algorithm 6.6: L<sub>2</sub>ORACLEDISCRETELOGARITHM(p, \alpha, \beta)
external L<sub>1</sub>, ORACLEL<sub>2</sub>
x_0 \leftarrow L_1(\beta)
\beta \leftarrow \beta/\alpha^{x_0} \mod p
i \leftarrow 1
while \beta \neq 1
\begin{cases} x_i \leftarrow \text{ORACLEL}_2(\beta) \\ \gamma \leftarrow \beta^{(p+1)/4} \mod p \\ \text{if } L_1(\gamma) = x_i \end{cases}
\text{c.} \text{then } \beta \leftarrow \gamma \\ \text{else } \beta \leftarrow p - \gamma \\ \beta \leftarrow \beta/\alpha^{x_i} \mod p \\ i \leftarrow i + 1 \end{cases}
return (x_{i-1}, x_{i-2}, \dots, x_0)
```