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Cryptosystem 7.5: Elliptic Curve Digital Signht&re Algorithm

Let p be a prime or a power of two, and let E be an elliptic curve defined
over [F,. Let A be a point on E having prime order ¢, such that the Discrete
Logarithm problem in (A) is infeasible. Let P = {0,1}*, A = Z;" x Z,",
and define

X={(pg, E,A,m;B): B = mA},

where 0 < m < g — 1. The values p, q, E A and B are the public key, and m
is the pnvate key

For K = (p,q, E, A, m, B), and for a (secret) random number k, 1 < k <
q — 1, define .

sig’(z, k) = (r, 8),
where

= (u,v)
r=umodgq, and
s = k~1(SHA-1(z) + mr) mod g.
(If either r = 0 or s = 0, a new random value of k should be chosen.)

Forz € {0,1}* and r, s € Z,*, verification is done by performing the follow- f§
ing computations:

w=s5'modg

i= wSHA-1(z) mod ¢

j = wr mod q
(u,v) =iA + jB

verg(z,(r,s)) =true <> umodg=r.

. anomfmhenciue



B Basic Principle of Digital Signatures
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Stenson

Definition 7.1: A signature scheme is a five-tuple (P, 4,X, 8, V), where
the following conditions are satisfied:

1. P is a finite set of possible messages

2. A is a finite set of possible signatures

3. K, the keyspace, is a finite set of possible keys

4. For each K € X, there is a signing algorithm sigy, € 8 and a corre-
sponding verification algorithm verx € V. Each sigg © P — A and
verg : P x A — {true, false} are functions such that the following
equation is satisfied for every message z € P and for every signature

yeA: f (z)
_ _ | true ify=sig(z
ver(z,y) = { false ify # sig(z).

A pair (z, y) with z € P and y € A is called a signed message.



Alice’s private key - Alice’s public key

Alice

Figure 9.15: Using a digital signature



Public-key System in Use

signature by hash and public-key encryption
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Cryptosystem 7.1: RSA Signature Scheme
Let n = pq, where p and g are primes. Let P = A = Z,,, and define
X = {(n, p,9,6,b) : n = pg, p, ¢ prime, ab = 1 (mod ¢(n))}.
The values n and b are the public key, and the values p, ¢, a are the private key.
For K = (n,p, q, a, b), define
sigy(z) =z° mod n

and
verg (z,y) = true & z = y° (mod n)

(z,y € an.

slow
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Cryptosystem 7.2: ElGamal Signature Scheme

Letpbea pnmc such that the discrete log problem in Z, is intractabbe, and bet
« € Z," be a primitive element. Let P = Zp', A= Z, X Zy-1, and define

X = {(p,,a,6): = a® (mod p)}.
The values p, a and § are the public key, and a is the bﬁvate key.
For K = (p, @, a, ), and for a (secret) random number & € Z,_;*, define

5'3&(3! k) = (73 J)&

where
7 =a* mod p

and
§=(z—ay)k™! mod (p—1).
Forz,vy€Z," andd € Z,_,, define

verk (z, (1,9)) = true & f79* = a* (mod p).

x= kJ#-Q/
X=¢C‘K~a( =P‘x‘

/s Can be cad x
.z,l(eef fﬂeﬁ




Cryptosystem 7.3: Schnorr Signature Scheme

Let p be a prime such that the discrete log problem in Z," is intractable, and
let g be a prime that divides p — 1. Let & € Z," be a ¢th root of 1 modulo p.
Let ? = {0,1}*, A = Z, x Z,, and define

X = {(p,@,0,6) : f = o® (mod p)},

where 0 < a < g — 1. The values p, ¢, a and f are the public key, and a is the
private key. Finally,let h : {0,1}* — Z, be a secure hash function.

For K = (p,q, o, a, §), and for a (secret) random number k, 1 < k < g — 1,
define

SigK(myk) = (77 5)
where
7= h(z || o*)

and
0 =k + ay mod g.

Forz € {0,1}* and 4,0 € Z,, .veriﬁcation is done by performing the follow-
ing computations:

verg (z,(v,9)) = true & h{z || °B77) = 7.
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Cryptosystem 7.4: Digital Signature Algorithm

Let p be a L-bit prime such that the discrete log problem in Z, is intractable, i
where L = 0 (mod 64) and 512 < L < 1024, and let g be a 160-bit prime
that divides p — 1. Let & € Z," be a gth root of 1 modulo p. Let P = {0, 1}*,
A=2Zg" xZ, , and define

X = {(p,q,,¢a,B) : B = a® (mod p)},

where 0 < a Srq — 1. The values p, ¢, a and B are the public key, and a is the
private key.

For K = (p, ¢, «, a, B), and for a (secret) random number k, 1 < k < ¢ — 1,
define

SigK (zlk) = (7: 6):
' | where

4 = (o* mod p) mod ¢ and

§ = (SHA-1(z) + av)k™* mod q.
(Ify=0o0r 6'= 0, a new random value of k should be chosen.)

For z € {0,1}* and v, d € Z,*, verification is done by performing the follow-
ing computations:

e1 = SHA-1(z) 6  mod ¢
e2 = v6 1 modg

verg(z, (7, 6)) = true < (a® §°? mod p) mod g = 7.

Oclobe,, 200/
Nest recom . P o plo24
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Key generation has two phases. The first phase is a choice of algorithm parameters which may be

Key generation

shared between different users of the system, while the second phase computes public and private keys

for a single user.

Parameter generation 20, 7

s Choose an approved cryptographic hash function H. In the original DSS, H was
always SHA-1, but the stronger SHA-2 hash functions are approved for use in
the current DSS.I519] The hash output may be truncated to the size of a key
pair.

m Decide on a key length L and N. This is the primary measure of the
cryptographic strength of the key. The original DSS constrained L to be a
multiple of 64 between 512 and 1,024 (inclusive). NIST 800-57 recommends
lengths of 2,048 (or 3,072) for keys with security lifetimes extending beyond
2010 (or 2030), using correspondingly longer N.[10] FiPS 186-3 specifies L and N
length pairs of {1,024, 160}, (2,048, 224), (2,048, 256), and (3,072, 256).141 N
must be less than or equal to the output length of the hash H.

m Choose an N-bit prime g.
m Choose an L-bit prime p such that p — 1 is a multiple of g.

= Choose g, a number whose mulitiplicative order modulo p is q. This may be done
by setting g = h? — 1¥9 mod p for some arbitrary h {1 < h < p — 1), and trying
again with a different f if the result comes out as 1. Most choices of i will lead
to a usable g; commonly h = 2 is used.

The algorithm parameters (p, g, g) may be shared between different users of the system.

Per-user keys

Given a set of parameters, the second phase computes private and public keys for a single user:

= Choose a secret key x by some random method, where 0 < x < g.
m Calculate the public key y = g*¥ mod p.

There exist efficient algorithms for computing the modular exponentiations A ~ /4 mod p and g* mod

p, such as exponentiation by squaring.

T afR 11717 RKT AM
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Cryptosystem 7.5: Elliptic Curve Digital Signbnire Algorithm

Let p be a prime or a power of two, and let £ be an elliptic cusve defined
over IF;. Let A be a point on E having prime order ¢, such that the Discrete [§
Logarithm problem in (A) is infeasible. Let P = {0,1}*, A = Z,* x Z,", |}
and define

X ={(p,g; £, A,m, B) : B = mA},

where 0 < m < g — 1. The values p, g, E A and B are the public key, and m
is the pnvate key

For K = (p,q,E, A, m, B), and for a (secret) random number k, 1 <k<
— 1, define

sigg’(z, k) = (r, 5),
where
kA = (u,v)
r=umodgq, and
s = k~1(SHA-1(z) 4 mr) mod q.
(If either r = 0 or s = 0, a new random value of k should be chosen.)

Forz € {0,1}* and r, s € Z,*, verification is done by performing the follow-
ing computations:

w=s5"'modg

i=wSHA-1(z) mod ¢

Jj=wrmodgq
(u,v) =iA+jB

verg (z, (r,s)) = true <> umod g =r.

lodes kie DSA, but all mesced up



B The Generalized Discrete Logarithm Problem
= Given is a finite cyclic group G with the group operation - and cardinality n.
= We consider a primitive element a € G and another element 8 € G.

= The discrete logarithm problem is finding the integer x, where 7 < x < n, such
that:

B=avacsge ..ca=a*
1 ]

1
x times

Chapter B of Understanding Cryptography by Christof Paar and Jan Pelz!

ov, th additive nolation
x int, X,p EC
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The discrete logarithm problem in Z,

Problem Instance [ = (p,a,f), where p is prime, a € Z; is a
primitive element, and § € Z,°.

Objective  Find the unique integer a,0 < a < p — 2, such that
a® = # (mod p).

We wil! denote this integer a by log, 8.

ECDL aralog
I=(E,7@)
E elplic cuwve
RR EE, fm‘h‘fs
Find k ¢uch thaf @=kP

k tn‘fcgw



Elliptic Curves over the Reals

IDeﬁnition 6.3: Let a,b € R be constants such that 4a® + 27b% £ 0. A“
‘non-singular elliptic curve is the set E of solutions (z,y) € R x R to the

equation -
y? = 2% + ax + b, (6.4)

together with a special point O called the point at infinity.
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B Computations on Elliptic Curves (ctd.)

* In cryptography, we are interested in elliptic curves
module a prime p:

Definition: Elliptic Curves over prime fields

The elliptic curve over Z,, p>3 is the set of all

pairs (x,y) € Z, which fulfill
y?=x3+ax+bmodp

together with an imaginary point of infinity 8,

where a,b €Z, and the condition
4a%+27b2 # 0 mod p.

* NotethatZ, = {0,1,..., p-1}is a set of integers
with modulo p arithmetic

BI24 Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzi
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4 + 27b° =09 sfnju'wv EC

+0
64 ks 3 dﬂ‘;fm‘f wols £

Dcfmmé P+&

Suppose P, Q € E, where P = (1, y:) and @ = (22, y2). We consider three
cases:
1. zy # 22
2.z =zrandy; =~
3. zy=zoandy = y2
In case 1, we define L to be the line through P and Q. L intersects E in the

two points P and @, and it is easy to see that L will intersect E in one further
pnint, which we call R'. If we reflect Rhn the x-axis, then we get a point which

we name R. We define P + @ = R.

O- infinidy, P+0=0+P=P
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B Computations on Elliptic Curves (ctd.)

= Generating a group of points on elliptic curves ‘

based on point addition operation P+Q =R, i.e,, -0
(Xo.Ye)HXa.Ya) = (Xe Ve . :
pYe)t(Xqy r Y Point Addition

® Geometric Interpretation of point addition operation

t
\ |

= Draw straight line through P and Q; if P=Q use \/ : : )
tangent line instead !

= Mirror third intersection point of drawn line with
the elliptic curve along the x-axis

14

= Elliptic Curve Point Addition and Doubling Formulas

[J
X3 =82 =x;=X;mod p and y; = s(x, ~x3)-y, mod p T< : Point Doubling
where :
U\

X
yi=ni
X21-Xxi |

2 I _p.
3’2 9 mod p if P =Q (point doubling) 2P =pP4+P
2y

mod p ; if P # Q (point addition)
s=

10¢24 Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl



B Computations on Elliptic Curves (ctd.) YZ - x3+ z( +2.

" The points on an elliptic curve and the point at infinity 8 form cyclic subgroups

2P = (51)+(5,1) = (6,3) 11P =(13,10)

3P = 2P+P = (10,6) 12P=(0,11) & :ié‘

4P = (3,1) 13P = (16,4)

5P = (9,16) 14P = (9,1)

6P =(16,13) 15P = (3,16) Y

7P =(0,6) 16P = (10,11)

8P =(137) 17P = (6,14)

9P = (7,6) 18P = (5,16) ; o

10P = (7,11) 19P =8 -

\\\/

This elliptic curve has order #E = |E| = 19 since it contains =2
19 points in its cyclic group.

P=(51)

2124 Chapter 9 of Understanding Cryplography by Christof Paagfnd Jan Pelzl
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Example 6.7 Let E be the elliptic curve y? = z3 + = + 6 over Z1;.

It=3wad Y

‘;_? 4z (11+1)/4 .mod 11 =+2°mod 11. & E hd‘“
in action o secp eS¢k

z | z° + 24 6 mod 11 | quadratic residue? | y

0 6 no

1 8 no

9 5 yes 4,7

3 3 yes 5,6

4 8 no

5 4 yes 2,9

6 8 no

7 4 yes 2,9

8 9 yes 3,8

9 7 no

10 4 yes 2,9
a = (2,7) 20 = (5,2) 3 = (8,3)
fa = (10,2) sa = (3,6) b = (7,9)
o = (7,2) 8a = (3,5) do = (10,9)
100 = (8,8) lla = (5,9) 12¢ = (2,4)



POINTCOMPRESS(P) = (z,y mod 2), where P = (z,y) € E.

POINTCOMPRESS : E\{0} = Z, x Z,,

Algorithm 6.4: POINTDECOMPRESS(z, 1)

| zead+az+bmodp

if z is a quadratic non-residue modulo p
then return (“failure”)

Y + /z mod p

if y = ¢ (mod 2)
then return (z, y)
else return (z,p — y)

else

HP: (5 Vodem‘f 6252960 B (798
@XFEWCS Gnr 20l

130+ Wy}s%o ard EC /3@7(61’)7[82
NS/4/ C@;ﬂ?(t‘comj (RSA Secwvl?l}/) ﬁP; Harms
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Cryptosystem 7.5: Elliptic Curve Digital Signhtﬁre Algorithm

Let p be a prime or a power of two, and let E be an elliptic curve defined
over [F,. Let A be a point on E having prime order ¢, such that the Discrete
Logarlthm problem in (A4) is infeasible. Let P = {0,1}*, A = Z;* x Z,’
and define

X=1{(p.q,E,A,m, B) : B=md},

where 0 < m < g — 1. The values p, g, E A and B are the public key, and m
is the pnvate key

For K = (p,q, E, A, m, B), and for a (secret) random number k, 1 <k<
g — 1, define ' :
sigg’(z, k) = (ry 5),
where
kA = (u,v)

r=umodgqg, and

5 = k~!(SHA-1(z) +mr) mod gq.
(If either » = 0 or s = 0, a new random value of k should be chosen.)
Forz € {0,1}* and r, s € Z,", verification is done by performing the follow-

ing computations:
w=s5"1modg
i = wSHA-1(z) mod ¢
Jj=wrmodgqg |
(u,v) =iA +jB

verg (z,(r,s)) = true <> umod g = r.
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Properties of Elliptic Curves

Hasse bound

Pt1-2y/p<#E<p+1+2p

L
Schoog uljowﬂm

0(@:‘7; )— ot s

THEOREM 6.1 Let E be an elliptic curve defined over Zp, where p is prime and
p > 3. Then there exist positive integers ny and ng such that (E, +) is isomorphic
10 Zn, X Zn, Further,ng | nyandng | (p—1).

cyclic sub o) E
of order 20 is "safe’

n, =l iﬂ E




B Implementations in Hardware and Software

= Elliptic curve computations usually regarded as

* Most efforts should go in optimizations of the

22124

consisting of four layers:

* Basic modular arithmetic operations are
computationally most expensive

* Group operation implements point doubling
and point addition

* Point multiplication can be implemented
using the Double-and-Add method

* Upper layer protocols like ECDH and
ECDSA

(k'P) \

Group Operation)

modular arithmetic operations, such as

* Modular addition and subtraction
* Modular multiplication

®* Modular inversion

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl
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Kohlctz Ccumves
K163 n h:hmr Galois -PL'HS
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= t7163 + t°7 + t76 + t°3 + 1

= 800000000000000000000000000PDOROOOOOOEACT

= ]

= 2fel3c0537bbcllacaad®7d793dedebd5e5¢94eece8

= 289070fb05d38ff58321f2e800536d538ccdaa3d9

= 5846006549323611672814741753598448348329118574063

= t7233 + t°74 + 1
= 20000000000000000000000000000000000000004000000000000000001
=0
G X = 17232ba853a7e731aft129122ff4149563a419c26bf50a4c9d6eefad6126
= 1db537dece819b7f70f555a67¢c427a8cd9bf18aeb9h56e0c11056faebal
= 3450873173395281893717377931138512760570940988862252126328087024741
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Secp256kl - Bitcoin Wiki ?;{__9 https://en.bitcoin.it/wiki/Secp256k1

/{:N{@X
Secg256k1 Nl

Mme

From B1t001 Wiki / - Vey,,ﬁgb@/ 'mzmdpm)

secp256k1l
refers to the
parameters of
the ECDSA
curve used in
Bitcoin, and is
defined in
Standards for
Efficient

Cryptography
&

(Certicom
Research,

=2 NIST

This is a graph of secp256k1's elliptic
curve y? = x3 + 7 over the real
numbers. Note that because secp256k1
is actually defined over the field Zp, its
graph will in reality look like random
scattered points, not anything like this.

http://www.secg.org/sec2-v2.pdf).

1of4 11/1/17, 4:43 PM



Koblitz
Parameters | Section | Strength | Size | RSA /DSA | or ran-
dom
secpl92kl | 2.2.1 96 192 1536 k
secpl92rl 2.2.2 96 192 1536 r
secp224kl 2.3.1 112 224 2048 k
secp224rl 2.3.2 112 224 2048 r
secp256ki 2.4 128 256 3072 k
secp256rl 2.4.2 128 256 3072 r
secp384rl 2.5.1 192 384 7680 r
secp521rl 2.6.1 256 521 15360 r

Table 1: Properties of Recommended Elliptic Curve Domain Parameters over IF .



2.4.1 Recommended Parameters secp256kl [ 'H)C QO{WJC ac [\h 2 m)

The elliptic curve domain parameters over [, associated with a Koblitz curve secp256k1 are
specified by the sextuple T' = (p,a,b, G,n, h) where the finite field F, is defined by:
p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
FFFFFC2F
— 2256_232_29_28_27_26_24_1

The curve E: y? = z* + az + b over [, is defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000007

The base point G in compressed form is:

G = 02 79BEG67E FODCBBAC 55406295 CE870B07 (029BFCDB 2DCE28D9
50F2815B 16F81798

and in uncompressed form is:

G = 04 79BE667E FODCBBAC 55406295 CE870B07 029BFCDB 2DCE28D9
59F2815B 16F81798 483ADA77 26A3C465 SDA4AFBFC OE1108A8 FD17B448
A6855419 9C47D0O8F FB10D4B3

Finally the order n of G and the cofactor are:

n

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C
D0364141
h = 01
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Provably Secure Signature Schemes

One-time Signatural Cn.lwn i fz DTS-
used ¢ [0TA

Cryptosystem 7.6: Lamport Signature Scheme

Let k be a positive integer and let P = {0, 1}*. Suppose f : Y — Z is a one-
way function, and let A = Y*. Let y; ; € Y be chosen at random, 1 < i < k,
j=0,1,andlet z;; = f(yij), 1 < i<k, j=0,1. The key K consists
of the 2k y’s and the 2k z’s. The y’s are the priVate key while the 2’s are the
public key. :

For K = (y,-,j, zij:1<i<kj=0, 1), define
sigg (€1, - -, mk) — (yl,:cu So0: yk,.‘l?k)'
A signature (a1, ..., ax) on the message (z,,..., zx) is verified as follows:

verg ((z1,...,%k), (@1,...,05)) = true & fla;) = zi z;, 1 <i < k.




Example 7.6 7879 is prime and 3 is a primitive element in Z+g79*. Define

]

Cf(2) = 3° mod 7879.
Suppose k = 3, and Alice chooses the six (secret) random numbers .

Yi,0 = 9831 Z1,0 = 2009

" y1,1 =735 -F z1;1 = 3810

| i;z,o = 803 # Z2,0 = 4672
ya,1 = 2467 291 = 4721
y3,0 = 4285 z3,0 = 268
y3,1 = 6449. 23,1 = 5731.

These z’s are published. Now, suppose Alice wants to sign the message

z=(1,1,0).
The signature for z is
(y1,1, ¥2,1, ys,0) = (735, 2467,4285).
To verify this signature, it suffices to compute the following:
3735 mod 7879 = 3810
3?47 mod 7879 = 4721
34285 mod 7879 = 268.

Hence, the signature is verified.



