Bitcoin Signature

or

ECDSA on secp256kl

5. Radziszowski sprecs. rit.edu Nov 7, 2017 Nov 28, 2017

ECDSA - secp256k1

- EC elliptic curve cubic F-field, f(x,y) - polynomial f-cubic in x, quadratic in YE-set of (x,y), so f(x,y)=0
- DSA digital signature algorithm as in NIST-DSS FIPS
 1994, EC added in 2000
 - sec Standards for Efficient Crypto Corticom 2005, 2010
- P^{256} $F = Z_P$ for special 256-bit prime P, $P \cong 2^{256}$
 - k Koblitz

 ulmost so, but OK

 index (them is no 2, 3,...)

Threads of this talk

- 1) Signatures
- 2 EC
- 3) special Bitcoin curve
- (4) security, no time ...

many sources:

textbooks

wiki
bitcoln developer quide
those missed will be listed
in the next version of slides

ECDSA

first try

Cryptosystem 7.5: Elliptic Curve Digital Signature Algorithm

Let p be a prime or a power of two, and let E be an elliptic curve defined over \mathbb{F}_p . Let A be a point on E having prime order q, such that the Discrete Logarithm problem in $\langle A \rangle$ is infeasible. Let $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = \mathbb{Z}_q^* \times \mathbb{Z}_q^*$, and define

$$\mathcal{K} = \{(p, q, E, A, m, B) : B = mA\},\$$

where $0 \le m \le q - 1$. The values p, q, E, A and B are the public key, and m is the private key.

For K = (p, q, E, A, m, B), and for a (secret) random number $k, 1 \le k \le q-1$, define

$$\operatorname{sig}_K^{r}(x,k)=(r,s),$$

where

$$kA = (u, v)$$

 $r = u \mod q$, and $s = k^{-1}(SHA-1(x) + mr) \mod q$.

(If either r = 0 or s = 0, a new random value of k should be chosen.)

For $x \in \{0,1\}^*$ and $r, s \in \mathbb{Z}_q^*$, verification is done by performing the following computations:

$$w = s^{-1} \mod q$$

 $i = w \operatorname{SHA-1}(x) \mod q$
 $j = wr \mod q$
 $(u, v) = iA + jB$
 $\operatorname{ver}_K(x, (r, s)) = \operatorname{true} \Leftrightarrow u \mod q = r.$

■ Basic Principle of Digital Signatures

Chapter 10 of *Understanding Cryptography* by Christof Paar and Jan Pelzi

6/26

Stinson

Definition 7.1: A signature scheme is a five-tuple $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$, where the following conditions are satisfied:

- 1. P is a finite set of possible messages
- 2. A is a finite set of possible signatures
- 3. K, the keyspace, is a finite set of possible keys
- 4. For each $K \in \mathcal{K}$, there is a signing algorithm $\operatorname{sig}_K \in \mathcal{S}$ and a corresponding verification algorithm $\operatorname{ver}_K \in \mathcal{V}$. Each $\operatorname{sig}_K : \mathcal{P} \to \mathcal{A}$ and $\operatorname{ver}_K : \mathcal{P} \times \mathcal{A} \to \{true, false\}$ are functions such that the following equation is satisfied for every message $x \in \mathcal{P}$ and for every signature $y \in \mathcal{A}$:

 $\operatorname{ver}(x,y) = \left\{ egin{array}{ll} true & ext{if } y = \operatorname{sig}(x) \\ false & ext{if } y
eq \operatorname{sig}(x). \end{array} \right.$

A pair (x, y) with $x \in \mathcal{P}$ and $y \in \mathcal{A}$ is called a signed message.

Figure 9.15: Using a digital signature

Public-key System in Use

signature by hash and public-key encryption

[Wikipedia]

1977 Rivest-Shamir-Adleman

Cryptosystem 7.1: RSA Signature Scheme

Let n=pq, where p and q are primes. Let $\mathfrak{P}=\mathcal{A}=\mathbb{Z}_n$, and define

$$\mathcal{K} = \{(n, p, q, a, b) : n = pq, p, q \text{ prime, } ab \equiv 1 \pmod{\phi(n)}\}.$$

The values n and b are the public key, and the values p, q, a are the private key.

For K = (n, p, q, a, b), define

$$\operatorname{sig}_K(x) = x^a \bmod n$$

and

$$\operatorname{ver}_K(x,y) = \operatorname{true} \Leftrightarrow x \equiv y^b \pmod{n}$$

 $(x,y\in\mathbb{Z}_n).$

slow

generating n is expensive and cannot be shared by different users

1985

Cryptosystem 7.2: ElGamal Signature Scheme

Let p be a prime such that the discrete log problem in \mathbb{Z}_p is intractable, and let $\alpha \in \mathbb{Z}_p^*$ be a primitive element. Let $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{A} = \mathbb{Z}_p^* \times \mathbb{Z}_{p-1}$, and define

$$\mathcal{K} = \{ (p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \}.$$

The values p, α and β are the public key, and α is the private key.

For $K = (p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathbb{Z}_{p-1}^*$, define

$$\operatorname{sig}_{K}(x,k)=(\gamma,\delta),$$

where

$$\gamma = \alpha^k \mod p$$

and

$$\delta = (x - a\gamma)k^{-1} \bmod (p - 1).$$

For $x, \gamma \in \mathbb{Z}_p^*$ and $\delta \in \mathbb{Z}_{p-1}$, define

$$\operatorname{ver}_K(x,(\gamma,\delta)) = \operatorname{true} \Leftrightarrow \beta^{\gamma} \gamma^{\delta} \equiv \alpha^x \pmod{p}.$$

 $x = k\delta + ay$ $\alpha^{x} = \alpha^{x} \cdot \alpha^{x} = \beta^{x} \cdot \beta^{x}$ 1. Can be forged for special x2. Keep k secret

Cryptosystem 7.3: Schnorr Signature Scheme

Let p be a prime such that the discrete log problem in \mathbb{Z}_p^* is intractable, and let q be a prime that divides p-1. Let $\alpha \in \mathbb{Z}_p^*$ be a qth root of 1 modulo p. Let $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = \mathbb{Z}_q \times \mathbb{Z}_q$, and define

$$\mathcal{K} = \{ (p, q, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \},\$$

where $0 \le a \le q-1$. The values p, q, α and β are the public key, and a is the private key. Finally, let $h: \{0,1\}^* \to \mathbb{Z}_q$ be a secure hash function.

For $K=(p,q,\alpha,a,\beta)$, and for a (secret) random number $k,1\leq k\leq q-1$, define

$$\operatorname{sig}_K(x,k) = (\gamma,\delta),$$

where

$$\gamma = h(x \parallel \alpha^k)$$

and

$$\delta = k + a\gamma \bmod q.$$

For $x \in \{0,1\}^*$ and $\gamma, \delta \in \mathbb{Z}_q$, verification is done by performing the following computations:

$$\operatorname{ver}_K(x,(\gamma,\delta)) = \operatorname{true} \Leftrightarrow h(x \parallel \alpha^{\delta}\beta^{-\gamma}) = \gamma.$$

1991+ NIST

Cryptosystem 7.4: Digital Signature Algorithm

Let p be a L-bit prime such that the discrete log problem in \mathbb{Z}_p is intractable, where $L \equiv 0 \pmod{64}$ and $512 \leq L \leq 1024$, and let q be a 160-bit prime that divides p-1. Let $\alpha \in \mathbb{Z}_p^*$ be a qth root of 1 modulo p. Let $\mathcal{P} = \{0, 1\}^*$, $\mathcal{A} = \mathbb{Z}_q^* \times \mathbb{Z}_q^*$, and define

$$\mathcal{K} = \{(p,q,\alpha,a,\beta) : \beta \equiv \alpha^a \; (\text{mod } p)\},\$$

where $0 \le a \le q-1$. The values p, q, α and β are the public key, and a is the private key.

For $K = (p, q, \alpha, a, \beta)$, and for a (secret) random number $k, 1 \le k \le q - 1$, define

$$\operatorname{sig}_K(x,k)=(\gamma,\delta),$$

where

$$\gamma = (\alpha^k \mod p) \mod q$$
 and $\delta = (SHA-1(x) + a\gamma)k^{-1} \mod q$.

(If $\gamma = 0$ or $\delta = 0$, a new random value of k should be chosen.)

For $x \in \{0,1\}^*$ and $\gamma, \delta \in \mathbb{Z}_q^*$, verification is done by performing the following computations:

$$e_1 = SHA-1(x) \delta^{-1} \mod q$$

 $e_2 = \gamma \delta^{-1} \mod q$

 $\operatorname{ver}_K(x,(\gamma,\delta)) = \operatorname{true} \Leftrightarrow (\alpha^{e_1}\beta^{e_2} \bmod p) \bmod q = \gamma.$

October 2001 Nist recom. $P=2^{1024}$

DSA

Key generation

Key generation has two phases. The first phase is a choice of *algorithm parameters* which may be shared between different users of the system, while the second phase computes public and private keys for a single user.

Parameter generation

2017

- Choose an approved cryptographic hash function *H*. In the original DSS, *H* was always SHA-1, but the stronger SHA-2 hash functions are approved for use in the current DSS.^{[5][9]} The hash output may be truncated to the size of a key pair.
- Decide on a key length *L* and *N*. This is the primary measure of the cryptographic strength of the key. The original DSS constrained *L* to be a multiple of 64 between 512 and 1,024 (inclusive). NIST 800-57 recommends lengths of 2,048 (or 3,072) for keys with security lifetimes extending beyond 2010 (or 2030), using correspondingly longer *N*.^[10] FIPS 186-3 specifies *L* and *N* length pairs of (1,024, 160), (2,048, 224), (2,048, 256), and (3,072, 256). ^[4] *N* must be less than or equal to the output length of the hash *H*.
- Choose an N-bit prime q.
- Choose an *L*-bit prime p such that p-1 is a multiple of q.
- Choose g, a number whose <u>multiplicative order</u> modulo p is q. This may be done by setting $g = h^{(p-1)/q} \mod p$ for some arbitrary h (1 < h < p 1), and trying again with a different h if the result comes out as 1. Most choices of h will lead to a usable g; commonly h = 2 is used.

The algorithm parameters (p, q, g) may be shared between different users of the system.

Per-user keys

Given a set of parameters, the second phase computes private and public keys for a single user:

- Choose a secret key x by some random method, where 0 < x < q.
- Calculate the public key $y = g^x \mod p$.

There exist efficient algorithms for computing the modular exponentiations $h^{(p-1)/q} \mod p$ and $g^x \mod p$, such as exponentiation by squaring.

11/3/17 9.57 AM

ECDSA

Cryptosystem 7.5: Elliptic Curve Digital Signature Algorithm

Let p be a prime or a power of two, and let E be an elliptic curve defined over \mathbb{F}_p . Let A be a point on E having prime order q, such that the Discrete Logarithm problem in $\langle A \rangle$ is infeasible. Let $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = \mathbb{Z}_q^* \times \mathbb{Z}_q^*$, and define

$$\mathcal{K} = \{(p, q, E, A, m, B) : B = mA\},\$$

where $0 \le m \le q - 1$. The values p, q, E, A and B are the public key, and m is the private key.

For K = (p, q, E, A, m, B), and for a (secret) random number $k, 1 \le k \le q-1$, define

$$\operatorname{sig}_K(x,k) = (r,s),$$

where

$$kA = (u, v)$$

 $r = u \mod q$, and $s = k^{-1}(SHA-1(x) + mr) \mod q$.

(If either r = 0 or s = 0, a new random value of k should be chosen.)

For $x \in \{0,1\}^*$ and $r, s \in \mathbb{Z}_q^*$, verification is done by performing the following computations:

$$w = s^{-1} \mod q$$

 $i = w \operatorname{SHA-1}(x) \mod q$
 $j = wr \mod q$
 $(u, v) = iA + jB$
 $\operatorname{ver}_K(x, (r, s)) = \operatorname{true} \Leftrightarrow u \mod q = r.$

looks like DSA, but all messed up

The Generalized Discrete Logarithm Problem

- Given is a finite cyclic group G with the group operation \circ and cardinality n.
- We consider a primitive element $\alpha \in G$ and another element $\beta \in G$.
- The discrete logarithm problem is finding the integer x, where $1 \le x \le n$, such that:

$$\beta = \underbrace{\alpha \circ \alpha \circ \alpha \circ \ldots \circ \alpha}_{x \text{ times}} = \alpha^{x}$$

9/19

Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

or, in additive notation
$$x$$
 int, x , $\beta \in G$

$$\beta = x + x + \dots + x$$

$$= x x$$

$$x, x \longrightarrow x x, \beta \text{ easy}$$

$$x, \beta \longrightarrow x \text{ infeasible}$$
to compute

The discrete logarithm problem in \mathbb{Z}_p

Problem Instance $I = (p, \alpha, \beta)$, where p is prime, $\alpha \in \mathbb{Z}_p$ is a primitive element, and $\beta \in \mathbb{Z}_p^*$.

Objective Find the unique integer $a, 0 \le a \le p-2$, such that

$$\alpha^a \equiv \beta \pmod{p}$$
.

We wil! denote this integer a by $\log_a \beta$.

ECDL analog
$$I = (E, P, Q)$$

$$E \text{ elliptic curve}$$

$$P, Q \in E, \text{ points}$$
Find k such that $Q = kP$
k integer

Elliptic Curves over the Reals

Definition 6.3: Let $a, b \in \mathbb{R}$ be constants such that $4a^3 + 27b^2 \neq 0$. A non-singular elliptic curve is the set E of solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ to the equation

$$y^2 = x^3 + ax + b, (6.4)$$

together with a special point O called the point at infinity.

Computations on Elliptic Curves (ctd.)

In cryptography, we are interested in elliptic curves module a prime p:

Definition: Elliptic Curves over prime fields

The elliptic curve over Z_p , p>3 is the set of all pairs $(x,y) \in Z_p$ which fulfill

$$y^2 = x^3 + ax + b \mod p$$

together with an imaginary point of infinity θ , where $a,b \in Z_p$ and the condition

 $4a^3+27b^2 \neq 0 \mod p$.

• Note that $Z_p = \{0, 1, ..., p-1\}$ is a set of integers with modulo p arithmetic

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzi

Defining Pta

Suppose $P, Q \in E$, where $P = (x_1, y_1)$ and $Q = (x_2, y_2)$. We consider three cases:

- 1. $x_1 \neq x_2$
- 2. $x_1 = x_2$ and $y_1 = -y_2$
- 3. $x_1 = x_2$ and $y_1 = y_2$

In case 1, we define L to be the line through P and Q. L intersects E in the two points P and Q, and it is easy to see that L will intersect E in one further point, which we call R'. If we reflect R' in the x-axis, then we get a point which we name R. We define P + Q = R.

$$O-infinity$$
, $P+O=O+P=P$

Computations on Elliptic Curves (ctd.)

- Generating a group of points on elliptic curves based on point addition operation P+Q=R, i.e., $(x_P,y_P)+(x_Q,y_Q)=(x_R,y_R)$
- Geometric Interpretation of point addition operation
 - Draw straight line through P and Q; if P=Q use tangent line instead
 - Mirror third intersection point of drawn line with the elliptic curve along the x-axis
- Elliptic Curve Point Addition and Doubling Formulas

$$x_3 = s^2 - x_1 - x_2 \mod p \text{ and } y_3 = s(x_1 - x_3) - y_1 \mod p$$
where
$$s = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \mod p & \text{; if P } \neq Q \text{ (point addition)} \\ \frac{3x_1^2 + a}{2y_1} \mod p & \text{; if P } = Q \text{ (point doubling)} \end{cases}$$

10/24

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

Computations on Elliptic Curves (ctd.)

• The points on an elliptic curve and the point at infinity θ form cyclic subgroups

$$2P = (5,1)+(5,1) = (6,3)$$

 $3P = 2P+P = (10,6)$
 $4P = (3,1)$
 $5P = (9,16)$
 $6P = (16,13)$
 $7P = (0,6)$
 $8P = (13,7)$
 $9P = (7,6)$
 $10P = (7,11)$

$$11P = (13,10)$$

 $12P = (0,11)$
 $13P = (16,4)$
 $14P = (9,1)$

$$17P = (6, 14)$$

 $18P = (5, 16)$

$$19P = \theta$$

This elliptic curve has order #E = |E| = 19 since it contains 19 points in its cyclic group.

$$P = (5,1)$$

Chapter 9 of Understanding Cryptography by Christof Paavand Jan Pelzl

12/24

Example 6.7 Let E be the elliptic curve $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11} .

11=3 mod 4

 $\pm z^{(11+1)/4} \mod 11 = \pm z^3 \mod 11$.

in action in secp256Kl

x	$x^3 + x + 6 \bmod 11$	quadratic residue?	y
0	6	no	
1 1	8	no	
2	5	yes	4,7
3	3	yes	4,7 5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

$$\alpha = (2,7)
4\alpha = (10,2)
7\alpha = (7,2)
10\alpha = (8,8)$$
 $2\alpha = (5,2)
5\alpha = (3,6)
8\alpha = (3,6)
8\alpha = (3,5)
11\alpha = (5,9)
3\alpha = (8,3)
6\alpha = (7,9)
9\alpha = (10,5)
12\alpha = (2,4)$

POINTCOMPRESS $(P) = (x, y \mod 2)$, where $P = (x, y) \in E$.

PointCompress: $E \setminus \{0\} \to \mathbb{Z}_p \times \mathbb{Z}_2$,

```
Algorithm 6.4: POINTDECOMPRESS(x, i)
z \leftarrow x^3 + ax + b \mod p
if z is a quadratic non-residue modulo p
then return ("failure")
\begin{cases} y \leftarrow \sqrt{z} \mod p \\ \text{if } y \equiv i \pmod 2 \\ \text{then return } (x, y) \\ \text{else return } (x, p - y) \end{cases}
```

HP: US patent 6252960 B1 1998
expires in 2018

130+ onpto and EC patents:
NSA, Certicom, RSA Security, HP, Harris

ECDSA

Cryptosystem 7.5: Elliptic Curve Digital Signature Algorithm

Let p be a prime or a power of two, and let E be an elliptic curve defined over \mathbb{F}_p . Let A be a point on E having prime order q, such that the Discrete Logarithm problem in $\langle A \rangle$ is infeasible. Let $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = \mathbb{Z}_q^* \times \mathbb{Z}_q^*$, and define

$$\mathcal{K} = \{(p,q,E,A,m,B) : B = mA\},\$$

where $0 \le m \le q-1$. The values p, q, E, A and B are the public key, and m is the private key.

For K=(p,q,E,A,m,B), and for a (secret) random number $k, 1 \leq k \leq q-1$, define

$$\operatorname{sig}_{K}(x,k) = (r,s),$$

where

$$kA = (u, v)$$

 $r = u \mod q$, and $s = k^{-1}(SHA-1(x) + mr) \mod q$.

(If either r = 0 or s = 0, a new random value of k should be chosen.)

For $x \in \{0,1\}^*$ and $r, s \in \mathbb{Z}_q^*$, verification is done by performing the following computations:

$$w = s^{-1} \mod q$$

 $i = w \operatorname{SHA-1}(x) \mod q$
 $j = wr \mod q$
 $(u, v) = iA + jB$
 $\operatorname{ver}_K(x, (r, s)) = \operatorname{true} \Leftrightarrow u \mod q = r.$

Properties of Elliptic Curves

Hasse bound

$$p + 1 - 2\sqrt{p} \le \#E \le p + 1 + 2\sqrt{p}$$
.

Schoof algorithm

$$O(\log p) - 6it qps$$

THEOREM 6.1 Let E be an elliptic curve defined over \mathbb{Z}_p , where p is prime and p > 3. Then there exist positive integers n_1 and n_2 such that (E, +) is isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Further, $n_2 \mid n_1$ and $n_2 \mid (p-1)$.

Implementations in Hardware and Software

- Elliptic curve computations usually regarded as consisting of four layers:
 - Basic modular arithmetic operations are computationally most expensive
 - Group operation implements point doubling and point addition
 - Point multiplication can be implemented using the Double-and-Add method
 - Upper layer protocols like ECDH and ECDSA
- Most efforts should go in optimizations of the modular arithmetic operations, such as
 - Modular addition and subtraction
 - Modular multiplication
 - Modular inversion

22/24

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

two NIST Koblitz Curves in binary Galois fields

K163

K233

STANDARDS FOR EFFICIENT CRYPTOGRAPHY

SEC 2: Recommended Elliptic Curve Domain Parameters

Certicom Research

Contact: Daniel R. L. Brown (dbrown@certicom.com)

January 27, 2010 Version 2.0

©2010 Certicom Corp.

License to copy this document is granted provided it is identified as "Standards for Efficient Cryptography 2 (SEC 2)", in all material mentioning or referencing it.

index

Secp256k1

From Bitcoin Wiki

-Köblitz (r venifiably random)

secp256k1

refers to the parameters of the ECDSA curve used in Bitcoin, and is defined in Standards for Efficient Cryptography (SEC)

(SEC) (Certicom

Research,

7 NIST

This is a graph of secp256k1's elliptic curve $y^2 = x^3 + 7$ over the real numbers. Note that because secp256k1 is actually defined over the field Z_p , its graph will in reality look like random scattered points, not anything like this.

http://www.secg.org/sec2-v2.pdf).

Parameters	Section	Strength	Size	RSA/DSA	Koblitz or ran- dom
secp192k1	2.2.1	96	192	1536	k
secp192r1	2.2.2	96	192	1536	r
secp224k1	2.3.1	112	224	2048	k
secp224r1	2.3.2	112	224	2048	r
secp256k1	2.4.1	128	256	3072	k
secp256r1	2.4.2	128	256	3072	r
secp384r1	2.5.1	192	384	7680	r
secp521r1	2.6.1	256	521	15360	r

Table 1: Properties of Recommended Elliptic Curve Domain Parameters over \mathbb{F}_p

2.4.1 Recommended Parameters secp256k1

(the same as in 2000)

The elliptic curve domain parameters over \mathbb{F}_p associated with a Koblitz curve secp256k1 are specified by the sextuple T = (p, a, b, G, n, h) where the finite field \mathbb{F}_p is defined by:

FFFFFC2F

$$= 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$$

The curve E: $y^2 = x^3 + ax + b$ over \mathbb{F}_p is defined by:

The base point G in compressed form is:

G=02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

and in uncompressed form is:

G=04.79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

Finally the order n of G and the cofactor are:

h = 01

My questions

- 1. What is current #0s in POW?
- 2. Why not single SHA256?

 // like HMAC
- 3. Domains few private and public keys are close but not the same. uncompressed private keys make no sense
 - P and |<G>| are distinct and have different roles
- 4. Is nonce k in ElGamal "child private key"?
- 5. Docs say

 private_key = SHA256 (minikey)

 see 3 above, books incorrect

POW-based mining

BTC 1euml 2009 0 50

2012 10M 25

2017 17M 12.5 10 Exta

per second 10¹⁹ = 2⁶⁴

2018
6.25 mining revolution

1000

ever 21M limit

Provably Secure Signature Schemes

One-time Signatures

Winternitz 075 used in 10TA

Cryptosystem 7.6: Lamport Signature Scheme

Let k be a positive integer and let $\mathcal{P} = \{0,1\}^k$. Suppose $f: Y \to Z$ is a one-way function, and let $\mathcal{A} = Y^k$. Let $y_{i,j} \in Y$ be chosen at random, $1 \le i \le k$, j = 0, 1, and let $z_{i,j} = f(y_{i,j})$, $1 \le i \le k$, j = 0, 1. The key K consists of the 2k y's and the 2k z's. The y's are the private key while the z's are the public key.

For $K = (y_{i,j}, z_{i,j} : 1 \le i \le k, j = 0, 1)$, define

$$\operatorname{sig}_K(x_1,\ldots,x_k)=(y_{1,x_1},\ldots,y_{k,x_k}).$$

A signature (a_1, \ldots, a_k) on the message (x_1, \ldots, x_k) is verified as follows:

$$\operatorname{ver}_K((x_1,\ldots,x_k),(a_1,\ldots,a_k))=\operatorname{true}\Leftrightarrow f(a_i)=z_{i,x_i},1\leq i\leq k.$$

Example 7.6 7879 is prime and 3 is a primitive element in \mathbb{Z}_{7879}^* . Define

$$f(x) = 3^x \bmod 7879.$$

Suppose k = 3, and Alice chooses the six (secret) random numbers

$$y_{1,0} = 5831$$
 $y_{1,1} = 735$
 $z_{1,0} = 2009$
 $z_{1,1} = 3810$
 $z_{2,0} = 4672$
 $z_{2,1} = 4721$
 $z_{3,0} = 4285$
 $z_{3,0} = 268$
 $z_{3,1} = 5731$

These z's are published. Now, suppose Alice wants to sign the message

$$x = (1, 1, 0).$$

The signature for x is

$$(y_{1,1}, y_{2,1}, y_{3,0}) = (735, 2467, 4285).$$

To verify this signature, it suffices to compute the following:

$$3^{735} \mod 7879 = 3810$$

 $3^{2467} \mod 7879 = 4721$
 $3^{4285} \mod 7879 = 268$.

Hence, the signature is verified.