
Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Contents

1 Part 1, nauty, pipes, and graph6 2
1.1 Problem statement . 2
1.2 Solution: 11 graphs on 4 vertices with no triangles in g6 format 2
1.3 Solution: Read, process, and write graphs in g6-format and avoid K5 ∈ Ḡ 3
1.4 Solution: Read, process, and write graphs in g6-format and avoid K6 ∈ Ḡ 7

2 Part 2, no programming, just some nauty help 8
2.1 Problem statement . 8
2.2 Solution: Draw nicely the single graph obtained above for k = 12. 8
2.3 Solution: Draw nicely the two most symmetric graphs among those you obtained

above for k = 11 (on 12 vertices). 9

3 Debugging 11

4 Source code 14
4.1 Bash scripts for high-level management and piping 14
4.2 Scripts to generate all possible graphs and to filter the results 16
4.3 Utility functions for the low-level details . 21
4.4 Scripts to count the number of edges in each graph 29

Listings

1 Output from nauty for 11 graphs on 4 vertices with no triangles. 2
2 Contents of n4.g6. 3
3 Results for (3,5,n)-graphs for all possible edges e. 4
4 Output for k = 11 (12 vertices). 6
5 Output for k = 12 (13 vertices). 6
6 Output for k = 13 (14 vertices). 6
7 Results for (3,6,n)-graphs for all possible edges e. 7
8 Confirm that my countedges.py script produces the correct results, given nauty

input, which is known to be correct. 13
9 The adjacency lists of the two graphs used in debugging. 13
10 Bash script ./run35ne.sh to create all (3, 5, n, e)-graphs. 14
11 Bash script ./run36ne.sh to create all (3, 6, n, e)-graphs. 15
12 gengraphs.py : Generate all the graphs with k + 1 vertices from the current input

graphs with k vertices. 16
13 filterC3andK5.py : Remove graphs G with C3 ∈ G and K5 ∈ Ḡ. 17
14 filterC3andK6.py : Remove graphs G with C3 ∈ G and K6 ∈ Ḡ. 19
15 utils.py : Utility functions. 21
16 genperm.py : For a given k, generate all permutations of 0s and 1s of length k. . . . 27
17 Permutations output for k = 4 from genperm.py. 28
18 compare.py : Compare my output vs. nauty output. 29
19 countedges.py : Count number of edges in G. Used for debugging and for printing

the table of edges vs. number of vertices. 29
20 createtable.py : Produce the table of edges vs. number of vertices. 31

Page 1 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

1 Part 1, nauty, pipes, and graph6

1.1 Problem statement

In this part of the assignment, use (nauty) functions which read and write graphs in g6-format1 of
graphs. Use pipes in at least some places.

1. In part 2.1 of the previous assignment you found 11 graphs on 4 vertices. Print g6-format of
those among them which have no triangles; put them into the file n4.g6.

2. Show that you can read, process, and write graphs in g6-format. Write a program which
reads graphs from input file I = n[k].g6 and makes output file O = n[k+1].g6, such that O
consists exactly of all canonically labeled graphs, which have (k+1) vertices, have no triangles,
and no independent sets of order 5.

• Iterate your program for (k=4;k<14;k++). Which nauty functions and with what options
did you use? Make use of some pipes. Include any special script, if any. You may
corroborate your results with the contents of table III on page 46 of the paper at position
#95 of the list2 (just 4 tables at tabs88.pdf3).

• Print g6-format of graphs you obtained for k = 11, k = 12, and k = 13.

• Print commented source code you wrote for this assignment (do not include nauty code
or any parts of other libraries, but do include any of your scripts using them).

3. (Optional) Follow the process of item 2., suitably adjusted, for triangle-free graphs but avoid-
ing K6 instead of K5.

1.2 Solution: 11 graphs on 4 vertices with no triangles in g6 format

Listing 1. Output from nauty for 11 graphs on 4 vertices with no triangles. Checking with
showg shows that this matches the output from HW01. The stdout is directed to
the n4.g6 file.

>> geng 4 -tv > n4.g6

>A geng -td0D3 n=4 e=0-4
>C 1 graphs with 0 edges
>C 1 graphs with 1 edges
>C 2 graphs with 2 edges
>C 2 graphs with 3 edges
>C 1 graphs with 4 edges
>Z 7 graphs generated in 0.00 sec

1http://users.cecs.anu.edu.au/~bdm/data/formats.txt
2https://www.cs.rit.edu/~spr/PUBL/publ.html
3https://www.cs.rit.edu/~spr/COURSES/CCOMP/tabs88.pdf

Page 2 of 32

http://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://www.cs.rit.edu/~spr/PUBL/publ.html
https://www.cs.rit.edu/~spr/COURSES/CCOMP/tabs88.pdf

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Listing 2. Contents of n4.g6.
C`
C?
C@
CB
CF
Cr
CR

I started with 4 ≤ k ≤ 14 as stated by the problem, then I started with a graph of 1 vertex and
0 edges (which is @ in .g6 format), ran the script from 1 ≤ k ≤ 14, and got the correct results with
both methods (Listing 3 on page 4).

1.3 Solution: Read, process, and write graphs in g6-format and avoid K5 ∈ Ḡ

1.3.1 Procedure

Given an input file n[k].g6 and the value k, construct all possible graphs, label and filter such
that only non-isomorphic (3, 5, k + 1, e)-graphs remain, and write these results to an output file
n[k+1].g6. Write utility functions that encode/decode the .g6 format as defined at https://
users.cecs.anu.edu.au/~bdm/data/formats.txt.

The bash script run35ne.sh (Listing 10 on page 14) executes this process:

1. Use genperm.py to generate all 2k permutations P of 0s and 1s for connecting the (k + 1)th

vertex to an existing graph on k vertices.4

2. Use gengraphs.py to append every permutation p to the binary form of every graph G in the
kth input file. Simply append p to the binary list created from the .g6 ASCII format; no need
for 0-1 matrices yet.

3. Pipe the output to the nauty function labelg -gq to canonically label the graphs.

4. Pipe to sort and uniq to sort lexicographically and then to remove duplicates, since canonical
labeling turns graph isomorphism into a simple string comparison. Now we know that we have
unique graphs to filter.

5. Pipe to filterC3andK5.py to filter out any graphs that have 3-cycles (C3) and/or independent
sets of size 5 (K5 ∈ Ḡ) by brute-force checking all possible combinations (returning early if a
bad candidate is found). Use 0-1 matrices here for indexing the edges in C3 and K5.

6. Write the file with k + 1 vertices to stdout, increment k, and repeat.

4To generate, start with base case (k = 0) of P0 = [[0], [1]]. Generate Pk+1 by making two copies of Pk, prepending
0 to one copy, 1 to the other copy, and then joining these two results into Pk,new for the next iteration.

Page 3 of 32

https://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://users.cecs.anu.edu.au/~bdm/data/formats.txt

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

1.3.2 Results

Listing 3. Results for (3,5,n)-graphs for all possible edges e. These match the correct results
from the 1988 paper. The code runs in under 2 minutes and uses no more than 2
GB of RAM with one CPU core is at 100% while the other three are around 20%.

1 $ time bash run35ne.sh
2
3 For graphs with 1 vertices, 1 (3,5)-graphs exist.
4 For graphs with 2 vertices, 2 (3,5)-graphs exist.
5 For graphs with 3 vertices, 3 (3,5)-graphs exist.
6 For graphs with 4 vertices, 7 (3,5)-graphs exist.
7 For graphs with 5 vertices, 13 (3,5)-graphs exist.
8 For graphs with 6 vertices, 32 (3,5)-graphs exist.
9 For graphs with 7 vertices, 71 (3,5)-graphs exist.

10 For graphs with 8 vertices, 179 (3,5)-graphs exist.
11 For graphs with 9 vertices, 290 (3,5)-graphs exist.
12 For graphs with 10 vertices, 313 (3,5)-graphs exist.
13 For graphs with 11 vertices, 105 (3,5)-graphs exist.
14 For graphs with 12 vertices, 12 (3,5)-graphs exist.
15 For graphs with 13 vertices, 1 (3,5)-graphs exist.
16 For graphs with 14 vertices, 0 (3,5)-graphs exist.
17
18 real 1m29.027s
19 user 1m33.428s
20 sys 0m0.581s

Page 4 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

n = 1 2 3 4 5 6 7 8 9 10 11 12 13
e = 0 1 1 1 1

1 1 1 1 1
2 1 2 2 1
3 2 3 3 1
4 1 4 6 2 1
5 2 8 7 1

6 1 7 13 5
7 4 17 13 1
8 2 15 27 3
9 1 10 39 11
10 4 41 28 1

11 1 27 59 2
12 1 15 73 10
13 6 62 32
14 2 33 69
15 1 14 86 1

16 1 4 65 6
17 2 32 19
18 12 31
19 3 30
20 1 13 1

21 4 2
22 1 5
23 2
24 2
25

26 1

Table 1. Number of edges e vs. number of vertices n for all (3, 5, n, e)-graphs. This matches
the results from the paper. Created with Listing 20 on page 31.

Page 5 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

1.3.3 .g6 format

The form of .g6 is [N(n) R(x)], where N(n) is the number of bytes required to store the number of
vertices n and R(x) is a row vector representation of the 0-1 matrix of the graph G. Since for this
exercise, n is always ≤ 63, N(n) is always the single byte n + 63. Therefore, the first letter of the
.g6 output is @ → A → B → C → D . . . indicating 1 → 2 → 3 → 4 → 5 . . . vertices, respectively.
This is a convenient way to check the number of vertices in G.

Listing 4. Output for k = 11 (12 vertices). K maps to 12 vertices in .g6, which is correct.
1 K`aAAGUEpRDo
2 K@AAHWYoYwTO
3 K`aAIOiDWsCh
4 K`?CGtDIkwL_
5 K?CkQMp[cgL@
6 K?GTa\cUDGrC
7 KoCIHaO@XDHB
8 K``@OkcEICoL
9 KQ`?pMCQ?bcU

10 Ks_GagjLASko
11 Ks_HIGZKQSm_
12 K?_YPMQoPokc

Listing 5. Output for k = 12 (13 vertices). L maps to 13 vertices in .g6, which is correct.
1 Ls`?XGRQR@B`Kc

Listing 6. Output for k = 13 (14 vertices). This is empty because no graphs with 14 vertices,
no triangles, and no independent sets of size 5 exist!

1.3.4 Source code

The source code starts in Section 4 on page 14.

Page 6 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

1.4 Solution: Read, process, and write graphs in g6-format and avoid K6 ∈ Ḡ

1.4.1 Procedure

The brute-force procedure is similar to avoiding K5 ∈ G; “just” add another layer to the brute-force,
nested loops. However, the problem blows up. The brute-force code ran for over 7 hours and only
finished computing for graphs with 12 vertices. In the textbook, there is an algorithm that generates
each clique exactly once (instead of k! times for a clique of size k), and I tried it implement it but
did not finish.

1.4.2 Results

Listing 7. Results for (3,6,n)-graphs for all possible edges e. These values that were calculated
match the correct results from the 1988 paper.

1 $ time bash run36ne.sh
2
3 For graphs with 1 vertices, 1 (3,6)-graphs exist.
4 For graphs with 2 vertices, 2 (3,6)-graphs exist.
5 For graphs with 3 vertices, 3 (3,6)-graphs exist.
6 For graphs with 4 vertices, 7 (3,6)-graphs exist.
7 For graphs with 5 vertices, 14 (3,6)-graphs exist.
8 For graphs with 6 vertices, 37 (3,6)-graphs exist.
9 For graphs with 7 vertices, 100 (3,6)-graphs exist.

10 For graphs with 8 vertices, 356 (3,6)-graphs exist.
11 For graphs with 9 vertices, 1407 (3,6)-graphs exist.
12 For graphs with 10 vertices, 6657 (3,6)-graphs exist.
13 For graphs with 11 vertices, 30395 (3,6)-graphs exist.
14 For graphs with 12 vertices, 116792 (3,6)-graphs exist.
15
16 // process killed here //
17
18 real 444m15.676s
19 user 487m45.096s
20 sys 1m31.155s

1.4.3 Source code

Run with Listing 11 on page 15.

Page 7 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

2 Part 2, no programming, just some nauty help

2.1 Problem statement

For each graph below, list generators of its automorphism group and explain why they show up (or
not) in your drawing (dreadnaut and countg --a may help). Label your graphs suitably.

1. Draw nicely the single graph obtained above for k = 12 (on 13 vertices).

2. Draw nicely the two most symmetric graphs among those you obtained above for k = 11 (on
12 vertices).

2.2 Solution: Draw nicely the single graph obtained above for k = 12.

Ls‘?XGRQR@B‘Kc

> < n13.dre & xo

(1 2 3 4)(5 7 8 6)(9 10 12 11)
level 2: 4 orbits; 1 fixed; index 4
(0 1)(2 9)(3 5)(4 10)(6 8)(7 12)
level 1: 1 orbit; 0 fixed; index 13
1 orbit; grpsize=52; 2 gens; 6 nodes; maxlev=3
cpu time = 0.00 seconds
0:12 (13);

0

1

2

9

3

5

4

10

6

8

7

12

11

Figure 1. The single graph on 13 vertices with the .g6 format of Ls`?XGRQR@B`Kc. All vertices
have degree 4. The generators used are (0 1)(2 9)(3 5)(4 10)(6 8)(7 12), and
the larger of the pair for each generator is on the top and the smaller is on the
bottom. The graph is symmetric about the x axis. However, observe that 11 is not
in the cycle of generators, and thus 11 is not part of the x axis symmetry (i.e. if the
graph were flipped about the x axis, then 11 would not move).

Page 8 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

2.3 Solution: Draw nicely the two most symmetric graphs among those you
obtained above for k = 11 (on 12 vertices).

Out of the 12 graphs produced, each graph was fed into dreadnaut, and the automorphisms were
generated with the xo command. The graphs with the largest group size (16 and 48, respectively)
and the largest number of generators (4 generators for each graph) were chosen. “Graph 3” and
“Graph 10” are from the lexicographical ordering of the canonical labeling.

K‘aAIOiDWsCh

> < n12.3.dre & xo
(2 3)(4 5)(6 7)(8 9)(10 11)
(2 3)(8 10)(9 11)
level 2: 6 orbits; 8 fixed; index 4
(0 1)(4 6)(5 7)
(0 2)(1 3)(4 8)(5 11)(6 10)(7 9)
level 1: 2 orbits; 0 fixed; index 4
2 orbits; grpsize=16; 4 gens; 9 nodes; maxlev=3
0:3 (4); 4:11 (8);

0

2

1

3

4

8

5

11

6

10

7

9

Figure 2. Graph 3. The generators used are (0 2)(1 3)(4 8)(5 11)(6 10)(7 9). The
graph is symmetric about the x axis.

Page 9 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Ks_GagjLASko

> < n12.10.dre & xo

(1 2)(3 4)(5 6)(7 8)(9 10)
(1 2)(7 9)(8 10)
level 2: 6 orbits; 7 fixed; index 4
(0 1)(2 11)(3 7)(4 10)(5 9)(6 8)
(0 3)(1 7)(2 9)(4 6)(5 11)(8 10)
level 1: 1 orbit; 0 fixed; index 12
1 orbit; grpsize=48; 4 gens; 9 nodes; maxlev=3
0:11 (12);

01

211

37

410

59

68

Figure 3. Graph 10. The generators used are (0 1)(2 11)(3 7)(4 10)(5 9)(6 8), and the
edges connecting the generating vertices are shown with gray dotted lines. The
graph is symmetric about the y axis.

Page 10 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

3 Debugging

I was under-counting the number of graphs. Below is my debugging process.

1. Generated all 5-vertex, canonically labeled5 graphs with geng 5 -l and compared to my
output from gengraphs.py. Looked to see which graphs I was missing and why. My output
gave 29 graphs; nauty output gave 34 graphs. When everything is filtered, the final answer
should be 13 graphs. The difference between my output and nauty’s was exactly K4 with the
new vertex either not connected or connected one-by-one. Since K4 has triangles, it is not
one of the input graphs to my function, so this makes sense.

2. geng 5 -lt gave 14, canonically labeled, triangle-free graphs, including the graph with no
edges. Deleting that gave a perfect matching to my output (Figure 4 on page 12), so graph
generation for 5 vertices worked correctly.

3. Used nauty to generate triangle-free graphs with 6 vertices, then filtered with my script to
remove K5 ∈ Ḡ; this gave 32 graphs, as expected, so my filtering worked correctly.

Next, used nauty to just canonically label graphs, then tried my filtering script, which still
worked (therefore both 3-cycle and indep set of size 5 filtering work correctly). So the problem
was in graph generation for graphs with 6 or more vertices.

4. countedges.py returned the correct answer for the nauty input (Listing 8 on page 13) so that
was correct.

5. Found a graph that should have been in my output but was not; namely, E@hO. Found the
“parent” graph of this graph, DAK. Used compare.py to do this (Listing 18 on page 29). The
adjacency lists for these two graphs are shown in Listing 9 on page 13.

6. The binary form of DAK was correct, but the binary form of what should be E@hO was not
correct, which is why E@hO was not produced by my script. Below are the details:

Given a permutation p = [1, 1, 1, 1, 1], below is the binary format6 of G after appending p.
The first five entries in Column 5 should all be 1s, so the two extra 0s at the start of Column 5
are incorrect; we also see that the five 1s are present, but they are shifted over by two places,
which is wrong.

of vertices current columns new column
------------- ----------------------- ---------------

6 1 2 3 4 5
[0,0,0,1,1,0, 0, 0,0, 0,1,0, 0,0,1,1, 0,0,1,1,1,1,1,0]

5The user must specifically tell nauty to canonically label the output with the -l flag; this confused me for a
while since I incorrectly assumed that nauty always canonically labels the graphs!

6G is exactly the graph DAK in this debugging.

Page 11 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

7. Where did these extra 0s and this shift come from? Below is G before appending p (and before
updating the number of vertices in the first 6 bits):

G = [0,0,0,1,0,1, 0, 0,0, 0,1,0, 0,0,1,1, 0,0]
^
These two 0s should NOT be here.

G is on 5 vertices so k = 5. The correct length G should be 16 = (k)(k−1)/2+6 = (5·4)/2+6,
but it was incorrectly 18. (For k = 4 vertices, the correct length of G is 12, which is a multiple
of 6, so the coding error did not appear until k = 5.)

The error was in converting from ASCII to binary when building up G. Because the utility
function ascii2bin(c) always produces a 6-bit output, then G is always a multiple of 6, and
this creates an extraneous number of trailing zeros after G.

This was fixed in asciiG_2bin (which calls ascii2bin(c)), because we know that the correct
number of bits is exactly equal to the maximum possible number of edges e in G, and we also
know that there must be 6 more bits that define the number of vertices in G. So we compute
e before-hand, truncate G to length 6 + e, and return the truncated version of G.

This solved the under-counting error!

Figure 4. n5 verified. Mine on the left; nauty on the right. This should be all the correct
input graphs to generate n6.

Page 12 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Listing 8. Confirm that my countedges.py script produces the correct results, given nauty
input, which is known to be correct.

1 $ python countedges.py 6 nauty6.g6
2
3 edges=0, correct: 0, mine: 0, good
4 edges=1, correct: 0, mine: 0, good
5 edges=2, correct: 1, mine: 1, good
6 edges=3, correct: 3, mine: 3, good
7 edges=4, correct: 6, mine: 6, good
8 edges=5, correct: 8, mine: 8, good
9 edges=6, correct: 7, mine: 7, good

10 edges=7, correct: 4, mine: 4, good
11 edges=8, correct: 2, mine: 2, good
12 edges=9, correct: 1, mine: 1, good

Listing 9. The adjacency lists of the two graphs used in debugging. It is a coincidence that
both graph are labeled “Graph 7” by nauty, since DAK can be the parent graph to
other valid (3,5)-graphs.

1 DAK E@hO
2
3 !Graph 7. !Graph 7.
4 0 : ; 0 : 4;
5 1 : 3; 1 : 5;
6 2 : 4; 2 : 3 4;
7 3 : 4; 3 : 5;
8 4 : ; 4 : ;
9 5 : ;

Page 13 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

4 Source code

(Comment: I tried to do this assignment in C but gave up after a few days and switched to Python.)

4.1 Bash scripts for high-level management and piping

Listing 10. Bash script ./run35ne.sh to create all (3, 5, n, e)-graphs.
1 # Bash shell script to run the CSCI 761 HW02 assignment for (3,5,n,e)-graphs
2 # with k vertices where 1 <= k <= 14.
3 #
4 # We read the kth file from stdin, run it through the script that adds a vertex
5 # and constructs all possible connections of that the vertex to the existing
6 # graph, pipe the output nauty to be canonically labeled, sort with `sort`,
7 # delete adjacent matching lines `uniq`, and finally write to the n[k+1].g6
8 # output file with stdout.
9 #

10 # For `labelg`, -g sets .g6 format, and -q is quiet mode.
11 #
12 # Hannah Miller
13 # 2019-02-01 (started)
14 #
15 for k in {1..14}; do
16 # Count the number of lines in the kth input file
17 n=($(wc -l < ./35ne/n$k.g6))
18
19 # Pretty-print to the console
20 echo "For graphs with " $k " vertices, " $n " (3,5)-graphs exist."
21
22 # Process `n[k].g6` using pipes
23 python gengraphs.py $k ./35ne/n$k.g6 \
24 | labelg -gq \
25 | sort \
26 | uniq \
27 | python filterC3andK5.py $((k+1)) \
28 > ./35ne/n$((k+1)).g6
29 done

Page 14 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Listing 11. Bash script ./run36ne.sh to create all (3, 6, n, e)-graphs.
1 # Bash shell script to run the CSCI 761 HW02 assignment for (3,6,n,e)-graphs
2 # with k vertices where 1 <= k <= 17.
3 #
4 # Very similar to `run35ne.sh`.
5 #
6 # For `labelg`, -g sets .g6 format, and -q is quiet mode.
7 #
8 # Hannah Miller
9 #

10 for k in {1..17}; do
11 # Count the number of lines in the kth input file
12 n=($(wc -l < ./36ne/n$k.g6))
13
14 # Pretty-print to the console
15 echo "For graphs with " $k " vertices, " $n " (3,6)-graphs exist."
16
17 # Process `n[k].g6` using pipes
18 python gengraphs.py $k ./36ne/n$k.g6 \
19 | labelg -gq \
20 | sort \
21 | uniq \
22 | python filterC3andK6.py $((k+1)) \
23 > ./36ne/n$((k+1)).g6
24 done

Page 15 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

4.2 Scripts to generate all possible graphs and to filter the results

Figure 5. Help output for the argparse inputs of gengraphs.py. This functionality was new
to me, and I liked having a command-line, UNIX-esque help for a Python script.

Listing 12. gengraphs.py : Generate all the graphs with k+1 vertices from the current input
graphs with k vertices.

1 '''See `./run.sh` in this same directory for the run instructions.
2
3 The format is described at
4 https://users.cecs.anu.edu.au/~bdm/data/formats.txt
5
6 Hannah Miller
7 2019-02-03 (started)
8
9 '''

10 # Import modules
11 import argparse
12 import copy
13 import math
14 import sys # get access to stdin/stdout
15
16 # Custom modules
17 import genperm # custom module to generate permutations
18 import utils # custom utilities
19
20 # Set up the argument parser (not reading from stdin, but rather using this)
21 # From https://docs.python.org/3/library/argparse.html
22 parser = argparse.ArgumentParser('Get number of vertices k and filename f.')
23 parser.add_argument('k', type=int,
24 help='the number of vertices k in the input graph')
25 parser.add_argument('f', type=str,
26 help='the filename f of the input file')
27 args = vars(parser.parse_args())
28
29 k = args['k']
30 f = args['f']
31

Page 16 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

32 k2,e,verts = utils.compute_useful_values(k) # WORK - need e or n???
33
34 # --
35 # Start computing
36
37 # Generate the permutations for the (k+1)-th new vertex and all its
38 # possible connectivities. There are 2^(k+1) possible connectivities
39 # (counting isomorphic duplicates, which nauty will remove).
40 perms = genperm.genperm(k)
41
42 # Open the file and loop through each line (i.e. each graph)
43 the_file = open(f,'r')
44 for ascii_line in the_file:
45 G_parent = utils.asciiG_2bin(e,ascii_line) # convert graph to binary form
46
47 # Overwrite the first 6 bits of G with the new number of vertices; namely,
48 # k+1 vertices
49 for i in range(6):
50 G_parent[i] = verts[i]
51
52 # Build all possible new graphs
53 for p in perms:
54 G = copy.deepcopy(G_parent) # set G to the parent graph
55 [G.append(_) for _ in p] # append the permutation p to the graph G
56
57 # Pad G out to closest upper multiple of 6
58 b = 6*int(math.ceil(len(G)/6.0)) # number of bytes b (need 6.0 as float!)
59 while len(G) < b:
60 G.append(0)
61
62 ascii_form = utils.binG_2ascii(G) # convert graph to ASCII form
63 sys.stdout.write(ascii_form) # send to stdout to be labeled by nauty

Listing 13. filterC3andK5.py : Remove graphs G with C3 ∈ G and K5 ∈ Ḡ.
1 '''For canonically labeled graphs, filter out graphs with C3 in the
2 graph and K5 in the complement of the graph (K5 in G-complement is the
3 same as an independent set of size 5 in G itself).
4
5 '''
6 # Import modules
7 import argparse
8 import math
9 import sys # get access to stdin/stdout

10
11 # Custom modules
12 import utils # custom utilities

Page 17 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

13
14 parser = argparse.ArgumentParser('Get the number of vertices k.')
15 parser.add_argument('k', type=int,
16 help='the number of vertices k in the input graph')
17 args = vars(parser.parse_args())
18 k = args['k']
19
20 k2,e,verts = utils.compute_useful_values(k)
21
22 # Process each ASCII line from stdin
23 for ascii_line in sys.stdin:
24 #print("--")
25 ascii_line = ascii_line.rstrip('\n') # remove new line
26 G = utils.asciiG_2bin(e,ascii_line) # convert graph to binary form
27 M = utils.graph2matrix(G) # convert to 2D matrix form M
28
29 # Check for cycles of size 3 and independent sets of size 5
30 has3cycle = utils.check3cycles(M)
31 hasindepset5 = utils.checkindepset5(M)
32
33 # print(ascii_line)
34 # print(G)
35 # utils.print_matrix(M)
36
37 if has3cycle or hasindepset5:
38 # print("\nBAD")
39 # print(" it is {} that {} has a 3-cycle".format(has3cycle,ascii_line))
40 # print(" it is {} that {} has an indep set of size

5".format(hasindepset5,ascii_line))
41
42 # Do NOT send this one to stdout
43 continue
44 else:
45 # print("\ngood")
46 # print(" it is {} that {} has a 3-cycle".format(has3cycle,ascii_line))
47 # print(" it is {} that {} has an indep set of size

5".format(hasindepset5,ascii_line))
48
49 # Send the ASCII version to be written to file
50 sys.stdout.write(ascii_line + '\n')

Page 18 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Listing 14. filterC3andK6.py : Remove graphs G with C3 ∈ G and K6 ∈ Ḡ.
1 '''For canonically labeled graphs, filter out graphs with C3 in the
2 graph and K6 in the complement of the graph (K6 in G-complement is the
3 same as an independent set of size 6 in G itself).
4
5 '''
6 # Import modules
7 import argparse
8 import math
9 import sys # get access to stdin/stdout

10
11 # Custom modules
12 import utils # custom utilities
13
14 parser = argparse.ArgumentParser('Get the number of vertices k.')
15 parser.add_argument('k', type=int,
16 help='the number of vertices k in the input graph')
17 args = vars(parser.parse_args())
18 k = args['k']
19
20 k2,e,n,verts = utils.compute_useful_values(k)
21
22 # Process each ASCII line from stdin
23 for ascii_line in sys.stdin:
24 #print("--")
25 ascii_line = ascii_line.rstrip('\n') # remove new line
26 G = utils.asciiG_2bin(n,ascii_line) # convert graph to binary form
27 M = utils.graph2matrix(G) # convert to 2D matrix form M
28
29 # Check for cycles of size 3 (i.e. triangles). Do triangles first
30 # since that is only k^3 of brute-force checking.
31 has3cycle = utils.check3cycles(M)
32 if has3cycle:
33 # Do NOT send this one to stdout
34 continue
35
36 # Check for independent sets of size 6 (we have already checked
37 # for 3-cycles in the graph generation process)
38 hasindepset6 = utils.checkindepset6(M)
39 if hasindepset6:
40 # Do NOT send this one to stdout
41 continue
42
43 # Otherwise, this is OK so send the ASCII version to be written to file
44 sys.stdout.write(ascii_line + '\n')
45
46 # # --

Page 19 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

47
48 # A,B = utils.build_auxilliary_sets(M) # build once
49
50 # utils.all_cliques(i,M,A,B,C)

Page 20 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

4.3 Utility functions for the low-level details

Listing 15. utils.py : Utility functions.
1 '''Utility functions for HW02.
2
3 '''
4 import math
5
6 # --
7 # Convert an ASCII character `c` to binary using .g6 rules.
8 #
9 def ascii2bin(c):

10 # Initialize
11 k = 5 # counter k; since we index from 0, `k` starts at 5 (not 6)
12 answer = [0 for i in range(6)] # .g6 always uses 6 bits
13
14 # Do the conversion this goes LSB to MSB
15 num = ord(c) - 63 # ASCII as number subtract decimal value of 63
16 while (num > 0):
17 R = num % 2 # the remainder R is a coefficient of either 0 or 1
18 answer[k] = R # update the answer with this step's coefficient
19 num = (num - R) / 2 # divide to prepare for the next step
20 k = k-1 # decrement counter to populate from LSB to MSB
21
22 return answer
23
24
25 # --
26 # Convert binary to ASCII using .g6 rules.
27 #
28 def bin2ascii(b):
29 k = 5 # counter k
30 answer = 0 # string that will hold the computation
31
32 # Do the conversion this goes MSB to LSB
33 for i in range(6):
34 answer = answer + b[i] * (2**k)
35 k = k - 1 # decrement
36
37 answer = answer + 63 # add 63 as defined by .g6
38 return chr(answer) # return as ASCII
39
40
41 # --
42 # Given a matrix M, print it. Used for debugging.
43 #
44 def print_matrix(M):

Page 21 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

45 k = len(M) # number of vertices = number of rows (and columns) of M
46
47 for i in range(k):
48 print(M[i]) # the row of M
49
50
51 # --
52 # Convert a one-line, binary form of a graph G to its 0-1 matrix form M.
53 #
54 def graph2matrix(G):
55 k = bin2ascii(G[:6]) # first six bits are number of vertices in G
56 k = ord(k)-63 # convert to .g6 int
57
58 M = [[0 for i in range(k)] for j in range(k)] # initialize
59 idx = 0 # index into G
60
61 for c in range(k):
62 r = 0
63 while r < c:
64 M[r][c] = G[idx+6] # must offset indexing into G by 6... very important!
65 M[c][r] = G[idx+6] # fill the lower triangle for use in `all_cliques`
66 idx += 1 # increment
67 r += 1 # increment
68
69 return M
70
71
72 # --
73 # Given matrix form M, check for 3-cycles (triangles) in G.
74 #
75 # Check if all the vertices are connected; always have the first index be larger
76 # than the second to enforce only looking at the upper triangle of M (i.e. i2 >
77 # i1 or i0)
78 #
79 def check3cycles(M):
80 k = len(M) # number of vertices = number of rows (and columns) of M
81 has3cycle = False # initialize
82
83 # print_matrix(M)
84
85 for i2 in range(k-2):
86 for i1 in range(i2+1,k-1):
87
88 if M[i2][i1]: # i2 & i1 are connected so this could be part of a triangle
89 for i0 in range(i1+1,k):
90
91 if M[i2][i0] and M[i1][i0]:
92 has3cycle = True # update

Page 22 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

93
94 return has3cycle
95
96
97 # --
98 # Given the matrix form M, check for independent sets of size 5 in G.
99 #

100 # This is very similar to the `check3cycles` function above.
101 #
102 def checkindepset5(M):
103 k = len(M) # number of vertices = number of rows (or columns) of M
104 hasindepset5 = False # initialize
105
106 for i4 in range(k-4):
107 for i3 in range(i4+1,k-3):
108
109 if not M[i4][i3]: # every non-edge ending with i3
110 for i2 in range(i3+1,k-2):
111
112 if not M[i4][i2] and not M[i3][i2]: # every non-edge ending with i2
113 for i1 in range(i2+1,k-1):
114
115 if (not M[i4][i1] and # every non-edge ending with i1
116 not M[i3][i1] and not M[i2][i1]):
117 for i0 in range(i1+1,k):
118
119 if (not M[i4][i0] and # every non-edge ending with i0
120 not M[i3][i0] and not M[i2][i0] and not M[i1][i0]):
121 hasindepset5 = True
122
123 # print("sum is {}".format(M[i4][i3] + \
124 # M[i4][i2] + M[i3][i2] + \
125 # M[i4][i1] + M[i3][i1] + M[i2][i1] + \
126 # M[i1][i0] + M[i4][i0] + M[i3][i0] + M[i2][i0]))
127 # print(i4,i3,i2,i1,i0)
128
129 return hasindepset5
130
131
132 # --
133 # Given the matrix form M, check for independent sets of size 6 in G.
134 #
135 def checkindepset6(M):
136 k = len(M) # number of vertices = number of rows (or columns) of M
137 hasindepset6 = False # initialize
138
139 for i5 in range(k-5):
140 for i4 in range(i5+1,k-4):

Page 23 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

141
142 if not M[i5][i4]:
143 for i3 in range(i4+1,k-3):
144
145 if not M[i5][i3] and not M[i4][i3]:
146 for i2 in range(i3+1,k-2):
147
148 if not M[i5][i2] and not M[i4][i2] and not M[i3][i2]:
149 for i1 in range(i2+1,k-1):
150
151 if (not M[i5][i1] and not M[i4][i1] and not M[i3][i1] and
152 not M[i2][i1]):
153 for i0 in range(i1+1,k):
154
155 if (not M[i5][i0] and not M[i4][i0] and not M[i3][i0] and
156 not M[i2][i0] and not M[i1][i0]):
157 hasindepset6 = True
158 return hasindepset6 # exit early
159
160 return hasindepset6
161
162
163 # --
164 # Given the matrix form M, for all vertices v, build auxilliary sets A
165 # (adjacency list of v) and B (vertices numbered greater than v).
166 #
167 def build_auxilliary_sets(M):
168 k = len(M) # number of vertices = number of rows (and columns) of M
169
170 # Initialize
171 A = [[] for _ in range(k)]
172 B = [[] for _ in range(k)]
173
174 # Build A and B over all vertices v
175 for v in range(k):
176
177 for j in range(k):
178 if M[v][j] == 1:
179 A[v].append(j)
180
181 B[v] = range(v+1,k) # vertices with labels greater than v
182
183 # Convert both A and B to a list of Python sets so we can do intersections
184 # more easily later
185 A = [set(_) for _ in A]
186 B = [set(_) for _ in B]
187
188 return A,B

Page 24 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

189
190
191 # # --
192 # # Given the matrix form M, auxilliary sets A and B from `build_auxilliary_sets`,
193 # # and set of choices C, use the algorithm from page 113 of the book to find all
194 # # the cliques exactly once.
195 # #
196 # # The algorithm will end early if it finds a clique of size 3 or of size WORK.
197 # #
198 # def all_cliques(i,M,A,B,C):
199 # print("--")
200 # k = len(M) # number of vertices = number of rows (and columns) of M
201
202 # if i == 0:
203 # V = set(0:k) # 0:k is all the vertices V in M
204 # N[i] = V
205 # C[i] = V
206
207 # return set([])
208
209
210
211 # else:
212 # N[i] = A[i-1].intersection(N[i-1])
213
214 # # If N[i] is empty, then A[i-1] is a maximal clique
215
216 # AnB = A[i-1].intersection(B[i-1])
217 # AnBnC = AnB.intersection(C[i-1])
218 # C[i] = AnBnC
219
220
221 # for x in C[i]:
222 # xi = x
223 # all_cliques(i,M,A,B,C)
224
225 # X = set([0:(i-1)])
226 # return X
227
228
229
230
231 # --
232 # Given number of input vertices k, compute some useful values.
233 #
234 def compute_useful_values(k):
235 k2 = k+1 # `k2` is the total number of vertices when we are done
236 e = (k)*(k-1)/2 # max number of edges e for k vertices

Page 25 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

237
238 # Calculate binary form of N(n), where n = k2 = k+1 (and k is the input number
239 # of vertices)
240 verts = ascii2bin(chr(63 + k2))
241
242 return k2,e,verts
243
244
245 # --
246 # Convert an ASCII form of a graph G to its binary form.
247 # Must remove new line `\n`, or else `\n` will get converted into a (fake)
248 # character, which will throw off the indexing by +6 in the ASCII to binary
249 # conversion. Convert each character in the line to its .g6 definition.
250 #
251 # `e` is the max number of edges in G, and `ascii_line` is the .g6 form of G.
252 #
253 def asciiG_2bin(e,ascii_line):
254 # Build up G
255 G = [] # initialize
256 for c in ascii_line.rstrip('\n'): # `c` is the current character
257 char_as_bin = ascii2bin(c) # convert ASCII -> binary
258 [G.append(cc) for cc in char_as_bin] # put the binary results into G
259
260 # Because `ascii2bin(c)` always produces a 6-bit output, then G is always a
261 # multiple of 6, and there may be extraneous number of trailing zeros after G
262 # (this was a subtle but major error!). However, we know that the correct
263 # number of bits is exactly equal to the maximum possible number of edges e in
264 # G, and we also know that there must be 6 more bits that define the number of
265 # vertices in G. So we compute that value (namely, `6+e`), truncate G to that
266 # length, and return it.
267 return G[:(6+e)]
268
269
270 # --
271 # Convert a binary form of a graph G to its ASCII form.
272 #
273 def binG_2ascii(G):
274 ascii_form = [] # initialize
275 jj = 0 # index into the ASCII form
276
277 for i in range(0,len(G),6): # use stride length of 6
278 ascii_form.append(bin2ascii(G[i:i+6])) # convert binary -> ASCII
279
280 ascii_form = ''.join(ascii_form) # join the list of characters
281 ascii_form = ascii_form + '\n' # need a new line so stdout plays nicely
282
283 return ascii_form

Page 26 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Listing 16. genperm.py : For a given k, generate all permutations of 0s and 1s of length k.
1 '''Given a value k, generate all permutations of 0s and 1s of length k. Lots of
2 copying, looping, and general inefficiency in this function, but it generates up
3 to k=17 in ~3 seconds (checked with `time python genperm.py`), so it is fine.
4
5 '''
6 import copy
7
8 def genperm(k):
9 perm = [[0], [1]] # the base case (k = 0)

10
11 # Create the permutations
12 for i in range(1,k):
13 # Copy. (Note: Need to use `copy.deepcopy` to create a true copy of the
14 # lists, or else modifying any of the perm, perm0, and perm1 lists will
15 # modify the others, which is not what we want!)
16 perm0 = copy.deepcopy(perm) # 0s will be appended to this list
17 perm1 = copy.deepcopy(perm) # 1s will be appended to this list
18
19 # Append 0s and 1s, respectively; use `_` as a throwaway variable
20 [perm0[_].append(0) for _ in range(len(perm0))]
21 [perm1[_].append(1) for _ in range(len(perm1))]
22
23 # Join the results to use in the next layer of the generation
24 perm = perm0 + perm1
25
26 perm.sort() # sort into lexicographic order
27
28 # # Sanity check of the final result
29 # print("k={:02d} : it is {} that expected & actual lengths are equal".format(
30 # k, 2**k == len(perm)))
31
32 # # Write to file
33 # with open('./perms/{:02d}.txt'.format(k), 'w') as f:
34 # for p in perm:
35 # f.write("%s\n" % p)
36
37 return perm
38
39 ### Test
40 # genperm(17)
41
42 ### Used to write all permutations to a file
43 # for k in range(4,18):
44 # print("k = {}".format(k))
45 # genperm(k)

Page 27 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

Listing 17. Permutations output for k = 4 from genperm.py. This is correct and can easily
be checked by inspection.

1 [0, 0, 0, 0]
2 [0, 0, 0, 1]
3 [0, 0, 1, 0]
4 [0, 0, 1, 1]
5 [0, 1, 0, 0]
6 [0, 1, 0, 1]
7 [0, 1, 1, 0]
8 [0, 1, 1, 1]
9 [1, 0, 0, 0]

10 [1, 0, 0, 1]
11 [1, 0, 1, 0]
12 [1, 0, 1, 1]
13 [1, 1, 0, 0]
14 [1, 1, 0, 1]
15 [1, 1, 1, 0]
16 [1, 1, 1, 1]

Page 28 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

4.4 Scripts to count the number of edges in each graph

Listing 18. compare.py : Compare my output vs. nauty output.
1 '''Compare my output vs. nauty output.
2
3 To run:
4 python compare.py
5
6 '''
7 # Enter my output and nauty's output as Python `sets`
8
9 mine = set(['EAIW', 'EAN_', 'EC\o', 'E?d_', 'E?D_', 'E?dg', 'E?Dg', 'E?F_',

10 'E?Fg', 'E@?G', 'E?GW', 'E@GW', 'E@hW', 'EIGW', 'E_lo', 'E?lo',
11 'E?Lo', 'E?No', 'E?NO', 'E?^o', 'E?~o', 'E?\o', 'E?So',
12])
13
14 nauty = set([
15 'E???', 'E??G', 'E??W', 'E??w', 'E?@w', 'E?Bw', 'E?D_', 'E?Dg', 'E?F_',
16 'E?Fg', 'E?GW', 'E?Lo', 'E?NO', 'E?No', 'E?So', 'E?\o', 'E?^o', 'E?d_',
17 'E?dg', 'E?lo', 'E?~o', 'E@?G', 'E@GW', 'E@hO', 'E@hW', 'EAIW', 'EAN_',
18 'ECXo', 'EC\o', 'EIGW', 'ES\o', 'E_GW', 'E_lo', 'E`?G', 'E`GW', 'E`dg',
19 'EoSo', 'Es\o',
20])
21
22 # Perform some set operations
23 both = mine.union(nauty)
24 justme = mine.difference(nauty)
25 justnauty = nauty.difference(mine)
26
27 # Print the results
28 print("\n\nboth")
29 print(both)
30
31 print("\n\njust me")
32 print(justme)
33
34 print("\n\njust nauty")
35 print(justnauty)

Listing 19. countedges.py : Count number of edges inG. Used for debugging and for printing
the table of edges vs. number of vertices.

1 '''Count number of edges in G. Used for debugging and for printing the table of
2 edges vs. number of vertices.
3
4 Run with this:
5 python countedges.py 6 n6.g6

Page 29 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

6
7 '''
8 # --
9 # Set up

10
11 # Import modules
12 import argparse
13 import math
14 import sys # get access to stdin/stdout
15
16 # Custom modules
17 import genperm # custom module to generate permutations
18 import utils # custom utilities
19
20 # Set up the argument parser (not reading from stdin, but rather using this)
21 # From https://docs.python.org/3/library/argparse.html
22 parser = argparse.ArgumentParser('Get number of vertices k and filename f.')
23 parser.add_argument('k', type=int,
24 help='the number of vertices k in the input graph')
25 parser.add_argument('f', type=str,
26 help='the filename f of the input file')
27 args = vars(parser.parse_args())
28
29 k = args['k']
30 f = args['f']
31
32 k2,e,verts = utils.compute_useful_values(k)
33
34 # --
35 # Start computing
36
37 # # Set up correct answers for checking (starting at 0 edges) on (3,5)-graphs
38 # if k == 5:
39 # correct_num_of_graphs = [0,1,2,3,4,2,1]
40 # elif k == 6:
41 # correct_num_of_graphs = [0,0,1,3,6,8,7,4,2,1] # graphs with 6 vertices
42 # else:
43 # print("unsupported number of vertices")
44
45 num_of_edges = [] # initialize
46
47 # Open the file and loop through each line (i.e. each graph)
48 the_file = open(f,'r')
49 for ascii_line in the_file:
50 G = utils.asciiG_2bin(e,ascii_line) # convert graph to binary form
51 G = G[6:] # remove the first 6 bits (the number of vertices) from G
52 num_of_edges.append(sum(G)) # count number of edges
53

Page 30 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

54 for i in range(len(correct_num_of_graphs)):
55 my_num_graphs = num_of_edges.count(i)
56
57 if my_num_graphs == correct_num_of_graphs[i]:
58 status = 'good'
59 else:
60 status = ' BAD'
61
62 print("edges={}, correct: {}, mine: {}, {}".format(
63 i, correct_num_of_graphs[i], my_num_graphs, status))

Listing 20. createtable.py : Produce the table of edges vs. number of vertices.
1 '''Given a directory d, number of vertices n, and number of edges e, read in
2 each file and produce the table of edges vs. number of vertices.
3
4 To run:
5 Update the inputs into the script.
6 python createtable.py
7
8 '''
9 # Define inputs

10 d = '/home/hm/Dropbox/RIT/761/hw02/35ne/'
11 n = 14 # number of vertices n
12 e = 26+1 # number of edges e (add +1 to include 0 edges)
13
14 # --
15
16 # Import modules
17 import os
18 import pandas as pd
19
20 # Custom modules
21 import utils
22
23 # Initialize list of lists to hold the results
24 A = [['' for _ in range(n)] for __ in range(e)]
25
26 # Loop through the files
27 for k in range(1,n):
28 k2,e,verts = utils.compute_useful_values(k)
29
30 num_of_edges = [] # initialize
31 f = os.path.join(d, "n" + str(k) + ".g6")
32 the_file = open(f,'r')
33
34 for ascii_line in the_file:

Page 31 of 32

Hannah Miller CSCI 761 Combinatorial Computing HW02 2019-02-07

35 #print(ascii_line.rstrip('\n'))
36 G = utils.asciiG_2bin(e,ascii_line) # convert graph to binary form
37 G = G[6:] # remove the first 6 bits (the number of vertices) from G
38
39 # Count number of edges on k vertices by summing 1s in the current graph
40 num_of_edges.append(sum(G))
41
42 # Find distribution of the number of edges on k vertices (the looping over
43 # `count` every time is inefficient, but the performance is fine for the
44 # purposes of this script)
45 if len(num_of_edges) > 0: # list is not empty
46 for ee in range(max(num_of_edges)+1): # loop through all edges ee
47 v = num_of_edges.count(ee) # count how many graphs have ee edges
48 if v != 0:
49 A[ee][k] = v
50
51 # --
52 # Output as LaTeX table
53
54 df = pd.DataFrame(A) # convert to Pandas dataframe
55 df = df.drop(columns=[0], axis=1) # remove the first column (0 vertices)
56
57 print(df.to_latex())

Page 32 of 32

	Part 1, nauty, pipes, and graph6
	Problem statement
	Solution: 11 graphs on 4 vertices with no triangles in g6 format
	Solution: Read, process, and write graphs in g6-format and avoid K5
	Solution: Read, process, and write graphs in g6-format and avoid K6

	Part 2, no programming, just some nauty help
	Problem statement
	Solution: Draw nicely the single graph obtained above for k=12.
	Solution: Draw nicely the two most symmetric graphs among those you obtained above for k=11 (on 12 vertices).

	Debugging
	Source code
	Bash scripts for high-level management and piping
	Scripts to generate all possible graphs and to filter the results
	Utility functions for the low-level details
	Scripts to count the number of edges in each graph

