Name: Giovana Puccini Email: gxp6079@g.rit.edu Homework 7

1.

2. Matrix proof

	\sum_{2}^{3}		0 1	2	0 1	2	0 1		2
0	3								
1	2	0	1			1		0	

0 3 1 2	0	1	1	0
0 3 1 2	0	1	1	1
0 3 2	0	1	1	0
	1	1	0	0
$1 - \frac{3}{2}$	1	0	0	0
1 + 1 + 1 = 1	1	0	0	0

There are no rows in this matrix where the first card and 2 others are used, that indicates that using the 1st card with any other 2 will be enough to reconstruct this graph.

3. Matrix proof 1

0 3 1 2	0 1 2	0 1 2	0 1 2	0 1 2
0 3 1 2	1	1	0	0
0 3 12	1	1	0	0
0 3 2	1	1	0	0
	1	0	0	0
	1	1	1	0

Given the last row, it is impossible to identify the graph with only 3 cards.

Matrix proof 2

0 3 12	0 12	0 12	0 1 2	0 1 2
0 3 1 2	0	0	1	1
0 3 1 2	1	0	1	1
$\begin{bmatrix} 0 & 3 \\ I & I \\ 1 & 2 \end{bmatrix}$	0	0	1	1
	1	1	0	0
	1	1	1	0

	1	1	0	0
03 1 12	1	1	0	0
	0	0	1	1

With the rows 2 and 5, we know it is not possible to reconstruct the graph without using all 4 cards.

Matrix proof 3

1	1	1	0
1	1	0	0
1	1	0	0

The third row indicates that it is not possible to reconstruct the graph without using all 4 cards.

_ 4.	Matrix proof	1								
0	3	0		0		0		0		
1	2	1	2	1	2	1	2	1		2
0	3		1	1			0		0	
0	3		1	0			0		0	
1—	2									

	0	0	0
--	---	---	---

Any 3 cards can reconstruct the original graph.

Matrix proof 2

Any 3 cards can reconstruct the original graph.

5. Matrix proof

0 3				
1 2	0	1	1	0
0 3 1 2	0	1	1	0
0 3 1 2	0	1	1	1
0 3 2	0	1	1	0
	1	1	0	0
	1	0	0	0
$1 \xrightarrow{1}{2} \frac{3}{2}$	1	0	0	0

The third row indicates that choosing the last 3 cards would not reconstruct the original graph. Therefore, we need to be able to pick 4 cards so that any combination reconstructs the original graph.