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1. Pruning Backtracking

Every instance of CNF-SAT can be reduced to an instance of CLIQUE; we can
construct a graph that represents the CNF-SAT instance, such that there must
exist a clique of size k if the formula is satisfiable, where k is the number of
clauses in the formula.

Keeping this in mind, we can use the graph representations of CNF-SAT
formulas to construct a “bounding function”. Whenever we are checking if an
assignment is valid, we can construct the graph that represents the “remain-
ing” formula, which includes the clauses that have not yet been satisfied with
variables that have not yet been assigned. We can run the greedy coloring algo-
rithm on this graph and reject the assignment if the chromatic number achieved
is smaller than the number of clauses (i.e. the clique size required).
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2. Ramsey/Folkman Numbers

(a) Which of the following are true?

• C5 → (3, 3)e, C5 → (3, 3)v

No. There are no triangles in C5, so there can’t be any monochromatic
triangles in any coloring of vertices/edges of C5.

• C5 → (2, 2)v

Yes. χ(C5) ≥ 3. Hence, every 2-coloring of C5’s vertices will include a
monochromatic edge.

• C5 → (2, 2, 2)v

No. Using Nenov and Lin’s Theorem: m = 2+2+2−1−1−1+1 = 4, so if
C5 → (2, 2, 2)v, χ(C5) must be ≥ 4. However, it is known that χ(C5) = 3.

• K4 → (3, 3)e

No. Using Nenov and Lin’s Theorem: M = R(3, 3) = 6, so if K4 → (3, 3)e,
χ(K4) must be ≥ 6. However, it is clear that χ(K4) = 4.

• K5 → (3, 3)e

No. Using Nenov and Lin’s Theorem: M = R(3, 3) = 6, so if K5 → (3, 3)e,
χ(K5) must be ≥ 6. However, it is clear that χ(K5) = 5.

• K6 → (3, 3)e

Yes. It is known that R(3, 3) = 6, so by definition K6 → (3, 3)e is true.

• K5 → (3, 3)v

Yes. We prove by contradiction; assume that the statement is false and
a coloring exists. Let V (K5) = {v1, v2, v3, v4, v5}. Consider the triangle
(v1, v2, v3). There must be two vertices with the same color. Assume
w.l.o.g. that v1 and v2 have the same color. W.l.o.g. let that color be color
A. Then it must be the case that v3, v4, and v5 have color B, otherwise
they form a monochromatic triangle with v1 and v2. However, in this case,
(v3, v4, v5) form a monochromatic triangle. Hence, no monochromatic
triangle-free coloring exists.

• K5 → (2, 2, 2)v

Yes. χ(K5) = 5, so any 3-coloring will have an edge that shares the same
colors.

• K5 → (2, 2, 2, 2)v

Yes. χ(K5) = 5, so any 4-coloring will have an edge that shares the same
colors.
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• K5 → (2, 2, 2, 2, 2)v

No. Using Nenov and Lin’s Theorem: m = 2 + 2 + 2 + 2 + 2− 1− 1− 1−
1− 1 + 1 = 6, so if K5 → (2, 2, 2, 2, 2)v, χ(K5) must be ≥ 6. However, it
is clear that χ(K5) = 5.

(b) Is is easier to prove a lower of upper bound for a Ramsey num-
ber? Is is easier to prove a lower of upper bound for a Folkman
number?

It is easier to prove a lower bound for a Ramsey number; to show a lower bound,
we only have to provide a valid witness coloring. To show an upper bound, we
have to prove that no such coloring exists.

It is easier to prove an upper bound for Folkman numbers because to show
a valid lower bound we have to prove that no coloring of the edges of all graphs
below the bound can have the desired property.

(c) Prove that k > R(s, t) implies Fe(s, t; k) = R(s, t)

k > R(s, t) means that Fe(s, t; k) may include graphs which include cliques of
size R(s, t). By the definition of Ramsey numbers, KR(s,t) is the smallest clique
such that each of its 2-edge-colorings must include Ks or Kt. Also by definition
of Ramsey numbers, no smaller graph has this property. Hence, Fe(s, t; k) =
R(s, t).

(d) Prove that K3 + C5 → (3, 3)e

Let G = K3 +C5. Let V (G) = {x, y, z, a, b, c, d, e}, where x, y, z are the vertices
of K3 and a, b, c, d, e are the vertices of C5. We show by contradiction that no
coloring exists for G without monochromatic triangles. Hence, we assume that
a coloring exists. First, we make the following observation:

Observation 1. Any sub-graph of C5 with more than three vertices has at
least one edge.

This is easy to see because for any two independent vertices in C5, a third
vertex must be incident to at least one of them. Now, assume w.l.o.g. that the
triangle (x, y, z) is colored such that (x, y) and (y, z) is colored A, and (x, z) is
colored B. We can now consider the following cases:

Case 1. Vertex z has ≥ 3 edges colored A going to C5. W.l.o.g. let
N = {a, b, c} be the neighbors of z such that (z, v) is colored A for each v ∈ N .
Clearly, if (z, v) is colored A for any v ∈ N , then (y, v) can not be colored
A, otherwise a monochromatic triangle is formed on (y, z, v). Hence, (y, v) is
colored B for each v ∈ N . However, due to Observation 1, we know that at
least one edge exists in N . Assume w.l.o.g. that the edge is (a, b). If (a, b) is
colored A, then (z, a, b) forms a monochromatic triangle. If (a, b) is colored B,
then (y, a, b) forms a monochromatic triangle.
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Case 2. Vertex z has ≤ 2 edges colored A going to C5. Clearly, z now has
≥ 3 edges colored B going to C5. We can now make the same argument as in
the previous case, but with x instead of y. For the sake of completeness, the
argument is repeated below.

W.l.o.g. let N = {a, b, c} be the neighbors of z such that (z, v) is colored B
for each v ∈ N . Clearly, if (z, v) is colored B for any v ∈ N , then (x, v) can not
be colored B, otherwise a monochromatic triangle is formed on (x, z, v). Hence,
(y, v) is colored A for each v ∈ N . However, due to Observation 1, we know that
at least one edge exists in N . Assume w.l.o.g. that the edge is (a, b). If (a, b) is
colored A, then (x, a, b) forms a monochromatic triangle. If (a, b) is colored B,
then (z, a, b) forms a monochromatic triangle.

In both cases we reach a contradiction. Hence, no coloring of G’s edges can
evade a monochromatic triangle, and the arrowing holds.
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3. Progress of Folkman problems

The following four things were found in [Bik18] but not in [Woo14].

(a) In [Woo14], it is mentioned that Fe(3, 3; 4) ≥ 19 is the best lower bound
known so far. It is shown in [Bik18] that Fe(3, 3; 4) ≥ 20.

(b) The result 32 ≤ Fv(2, 2, 2, 2, 2; 3) ≤ 40 is mentioned in [Bik18], but no
results relevant to this Folkman number are discussed in [Woo14].

(c) In [Woo14], the bounds for Fv(2, 2, 2, 3; 4) are: 18 ≤ Fv(2, 2, 2, 3; 4) ≤ 30.
However, in [Bik18], it is show than 20 ≤ Fv(2, 2, 2, 3; 4) ≤ 22.

(d) In [Woo14], it is only mentioned that Fv(2, 3, 3; 4) ≥ 19, while in [Bik18],
it is shown that 20 ≤ Fv(2, 3, 3; 4) ≤ 24.

5



4. Making Graphs

(a) The Petersen Graph

The Petersen Graph has 10 vertices and 15 edges. It has 120 automorphism
groups. It is triangle-free, and has a chromatic number of 3.

The Petersen Graph is the complement of the line graph1 of K5 [Pet]. Hence,
we can use the following command to generate the Petersen Graph:

./genspecialg -k5 | ./linegraphg | ./complg

The canonical label is:
:I‘ACWqHKhhccTF

(b) The Grötzsch Graph

The Grötzsch Graph is a graph on 11 vertices and 20 edges. It is triangle-free
and Hamiltonian. It has a chromatic number of 4 and only has 10 automor-
phisms [Grt].

The graph was generated using the following nauty command:

./geng 11 20 | ./pickg - b -T0 -a10 | ./labelg

This specifies that the graph must not be bipartite (i.e. chromatic number
is greater than 2), has no triangles, and has 10 automorphisms. The canonical
label is:

J?AKagjXfo?

(c) The Clebsch Graph

The Clebsch graph is a graph on 16 vertices and 40 edges. The graph regular,
Hamiltonian, and triangle-free. The 3-edge-coloring of K16 which contains no
monochromatic triangles splits the graph into 3 copies of the Clebsch graph [Cle].

The Clebsch graph is 5-regular, and for each vertex, the non-neighbors form
an isomorphic copy of the Petersen graph [Cle]. Keeping this in mind, the
following graph G was constructed: G = Petersen Graph ∪ 5-Star. Clearly, G
is contained in the Clebsch graph. G has 5 edges from the star, and 15 from the
Petersen Graph. So, adding 20 edges to G such that no new triangle is formed
and each vertex has degree ≤ 5 will give us graphs that match the Clebsch
graph description. The dreadnaut version of G was constructed and converted
to g6 format. Then, the following command was used to generate graphs with
one edge added that do not break the desired properties:

./addedgeg -t -D5 | ./shortg

1A line graph L(G) = (LV , LE) of a graph G = (V,E) is a graph where LV = E and
(u, v) ∈ LE iff edges u and v are incident on the same vertex in G
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This was repeated 20 times, and the only graph obtained was the Clebsch
graph, which has the following canonical label:

OsaBA‘GP@‘dIHWEcas ]O

(d) The Paley Graph P17

P17 has 17 vertices and 68 edges. The Payley Graph P17, like all Payley graphs,
is Hamiltonian and regular. It is 8-regular.

The squares in Z17 were identified as S = {1,−1, 2,−2, 4,−4, 8,−8}. An
adjacency list was created for vertex set {0, 1, 2, . . . , 17} where vertex i is ad-
jacent to i + j mod 17 for each j ∈ S. The adjacency list was converted to a
dreadnaut file and converted to g6 format using dretog. The canonical label
is:

P}qTKukXaUja[IBjanPeMI\K

(e) The Schläfli Graph

The Schläfli Graph is a graph on 27 vertices and 216 edges. It is Hamiltonian,
16-regular, and has 51,840 automorphisms. It is the single witness graph for
R(J7, J4) = 28, i.e. it contains no J7’s or J4’s.

According to [Sch, BN92], the following can be used to construct the Schläfli
Graph:

“ The Schläfli graph may also be constructed from the system of eight-
dimensional vectors

(1, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0, 1), and (−1/2,−1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2),
and the 24 other vectors obtained by permuting the first six coordinates of these
three vectors. These 27 vectors correspond to the vertices of the Schläfli graph;
two vertices are adjacent if and only if the corresponding two vectors have 1 as
their inner product. ”

The vectors were constructed, and the graph was generated as described
above in adjacency list format. The corresponding dreadnaut file was made
and converted to g6 using dretog. The canonical label is:

Z~~vnZjvUtw~nSmis{{k~a^||QBtQJNHLU[VQ^BxkFnDK\zEEvn@Tn^ Tn^w

The following 27 vectors were used to generate the graph:
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(1, 0, 0, 0, 0, 0, 1, 0)

(0, 1, 0, 0, 0, 0, 1, 0)

(0, 0, 1, 0, 0, 0, 1, 0)

(0, 0, 0, 1, 0, 0, 1, 0)

(0, 0, 0, 0, 1, 0, 1, 0)

(0, 0, 0, 0, 0, 1, 1, 0)

(1, 0, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 0, 0, 1)

(0, 0, 1, 0, 0, 0, 0, 1)

(0, 0, 0, 1, 0, 0, 0, 1)

(0, 0, 0, 0, 1, 0, 0, 1)

(0, 0, 0, 0, 0, 1, 0, 1)

(−1/2,−1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2)

(−1/2, 1/2,−1/2, 1/2, 1/2, 1/2, 1/2, 1/2)

(−1/2, 1/2, 1/2,−1/2, 1/2, 1/2, 1/2, 1/2)

(−1/2, 1/2, 1/2, 1/2,−1/2, 1/2, 1/2, 1/2)

(−1/2, 1/2, 1/2, 1/2, 1/2,−1/2, 1/2, 1/2)

(1/2,−1/2,−1/2, 1/2, 1/2, 1/2, 1/2, 1/2)

(1/2,−1/2, 1/2,−1/2, 1/2, 1/2, 1/2, 1/2)

(1/2,−1/2, 1/2, 1/2,−1/2, 1/2, 1/2, 1/2)

(1/2,−1/2, 1/2, 1/2, 1/2,−1/2, 1/2, 1/2)

(1/2, 1/2,−1/2,−1/2, 1/2, 1/2, 1/2, 1/2)

(1/2, 1/2,−1/2, 1/2,−1/2, 1/2, 1/2, 1/2)

(1/2, 1/2,−1/2, 1/2, 1/2,−1/2, 1/2, 1/2)

(1/2, 1/2, 1/2,−1/2,−1/2, 1/2, 1/2, 1/2)

(1/2, 1/2, 1/2,−1/2, 1/2,−1/2, 1/2, 1/2)

(1/2, 1/2, 1/2, 1/2,−1/2,−1/2, 1/2, 1/2)
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