Some Edge Folkman Numbers
Ramsey arrowing of triangles

Stanistaw Radziszowski

Department of Computer Science
Rochester Institute of Technology, NY

5PCC, 22 Sep 2014




Erdos and Hajnal
Research Problem 2-5, JCT 2, p. 105, 1967

Construct a graph G which does not contain a complete hexagon
such that for every coloring of the edges by two colors there is a
triangle all of whose edges have the same color.

done by R.L. Graham in 1968

The proposers expect that for every cardinal m there is a graph G
which contains no complete quadrilateral such that for every coloring
of the edges by m colors there is a triangle all of whose edges have
the same color.

proved for m = 2 by Folkman in 1970
proved in general by Nesetril and Rédl in 1976
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History of the Most Wanted Folkman Number

What is the smallest order n of a K4-free graph
which is not a union of two triangle-free graphs?

year IovgiL/Egser who/what

1967 any? Erdds-Hajnal

1970 exist Folkman

1972 10 — Lin

1975 —10'°7? Erd6s offers $100 for proof

1986 —8 x 10" | Frankl-Rédl (almost won)

1988 -3 x10° | Spencer

1998 —10°? Chung-Graham offer $100 for the answer
1999 16 — Piwakowski-R-Urbanski (implicit)
2007 19 — R-Xu

2008 — 9697 Lu

2008 — 941 Dudek-Rodl

2012 — 786 Lange-R-Xu

2012 — 1007 Graham offers $100 for proof
2014 — 1277 working hard ...

3/41 Ramsey Arrowing



Folkman Graphs and Numbers

For graphs F, G, H and positive integers s, ¢

> F — (s,1) iff in every 2-coloring of the edges of F
there is a monochromatic K, in color 1 or K; in color 2

» F — (G, H) iff in every 2-coloring of the edges of F
there is a copy of G in color 1 or a copy of H in color 2

Edge Folkman graphs
Fe(s,t.k) ={F | F — (s,1), Kx £ F}

Edge Folkman numbers
F.(s,t; k) = the smallest order of graphs in F,(s, t; k)

on slide 2 we discussed F(3, 3; 4)

Theorem (Folkman 1970)
If kK > max(s, ), then F.(s,t; k) and F,(s, t; k) exist.

from now, all arrowing is edge-arrowing unless specified as vertex-arrowing
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Classics

R(3,3) = 6
K5 7L> (3,3) K¢ — (3,3)
o
®
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®
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Classics

R(3,3) = 6

K5 7L> (3,3) K¢ — (3,3)

What if we want F to be Kq-free? (i.e. in F,(3,3;6))
» Graham 1968: K¢ g Ky —Cs =Cs+ K3 — (3, 3)
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Classics

R(3,3) = 6

K5 7L> (3,3) K¢ — (3,3)

What if we want F to be Kq-free? (i.e. in F,(3,3;6))
» Graham 1968: K¢ g Ky —Cs =Cs+ Kz — (3, 3)
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k | F.(3,3;k) graphs who
> 7 6 K folklore
6 8 Cs + K; Graham 1968
5 15 659 graphs | Piwakowski-R-Urbanski 1999
4 19 — 786 L R-Xu 2007, Lange-R-Xu 2013

k> R(s,t) = F,(s,t;k) = R(s,1)

k < R(s,t), very little known in general
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Asymptotics for Edges

R&dl, Rucinski and Schacht, 2014

Theorem 1. For all » > 2 and large k

f(k, I") — Fe(kr,k+ 1) S 20(k4 |ogk—|—k3r|ogr).

Theorem 3. Forall0 < o < 1/4 and large k < al

fk, 1) = Fo(k, k; 1) < 24/(1=4a),

Challenge. Obtain any reasonable lower bound.
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Asymptotics for Vertices
Dudek and Rodl, 2010

Theorem 1. For all » > 2 there exists ¢,, such that for all &

F,(kyik+1) < ¢,n’log” k.

Theorem 2. For all » > 2 and arbitrarily small ¢ > 0,
there exists ¢ = ¢(r, €), such that for all k

Fo(kr; [(2 + €)k]) < ck.
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Some facts on F,(s, t; k)

> Gc F(s, k) = X(G) > R(s,1)
easy, no k in the bound!

> F.(s,t;k) = R(s,t) fork > R(s,t) easy

> F.(s,t;R(s,t)) = R(s,1) + ¢ SO, SO
in most cases c is small (2, 4, 5)

> F.(s,t;k) > R(s,t) +4 fork < R(s,t) hard

» Ge F(R(s—1,1),R(s,t —1);k—1) = G+ x € F.(s,t;k)
or equivalently

G+xA (s,0)= G4 (R(s — 1,1),R(s,t — 1)),
and clearly cl(G + x) = cl(G) + 1

Deparment of Computer Science

9/41 Ramsey Arrowing



F.(3,3;5) = 15, and F,(3,3;4) = 14

G+x— (3,3),and G — (3,3)"

unique 14-vertex bicritical F, (3, 3;4)-graph G (pru 1999]
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Arrowing is Hard

more difficult for edges than vertices

Complexity

» Determining if F — (3,3)¢ is coNP-complete, Burr 1976
» Testing F — (G, H)* is %-complete, Schaefer 2001

Leads to Ramsey nhumbers
R(s,t) = min{n | K, — (s,1)}

43 < R(5,5)<49: Ku 4 (5,5)%, Kao — (5,5)°

Arrowing triangles reduces to 3-SAT (actually, 3-NAE-SAT)
For all (edge) triangles xyz, we add the clauses
(xVyVz)and (xVyVZz)to¢. Then

G 4 (3,3)° iff ¢(G) is satisfiable
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Counting Triangles

in order to deduce F — (3,3)¢

For any blue-red edge coloring of graph G, let

» Tgs(v), Trr(v), and Tgr(v) count triangles vuw
where {v,u} and {v,w} are blue-blue, red-red, and blue-red

» Toiues Tred, anNd Thue-red CcOUNt the number of
all blue, red and blue-red triangles

Then
> ZvEV(G) Ter(v) = 2Tbiue-red
> ZvEV(G) (TBB (v) + TRR(V)) = 3(Toue + Tred) + Thiue-red
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Counting Triangles

in order to deduce F — (3,3)¢

This leads to

> Ter(v) =2 ) Tes(v)+ Tar(v) | — 6(Toie + Tred)-
veV(G) veV(G)
G — (3, 3) iff Thue + Treg > O for every coloring
SO,

G — (3, 3) iff for every coloring

Z Ter(v) < 2 Z (TBB(V) + TRR(V)) (1)

veV(G) veV(G)
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From Arrowing to MAX-CUT

only edge-arrowing for a while

A cut of G is a bipartition of its vertices, S C V(G), S = V(G) \ S,
the sizeof acutis |{ {u,v} € E(G) |uecsS, ve S},

let MC(G) be the maximum cut size of G.

Theorem: (Frankl-Rodl 1986, Spencer 1988)
If

S MCGINGD) <5 3 IGINDI

veV(G) veV(G)

then G — (3, 3).
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From Arrowing to MAX-CUT

another way to count

Define graph H

V(H) = E(G),
E(H) ={{e,f} | e.f € E(G), efgisa A in G for some edge g}.

Then |E(H)| = 3ta(G)

% 4 < MC(H) < 6,1 (G) =3

Theorem: (Dudek-Rodl 2008)

G = (3,3) iff MC(H) < 2ia(G) (2)
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MAX-CUT Problem

MAX-CUT(H, k)
For graph H and integer k, is there a cut of H whose size is at least k7

» One of Karp’s original NP-complete problems (Karp 1972)

Dudek-Rddl theorem gives:

G — (3,3) iff MAX-CUT (H,2/(G)) = NO

We will approximate the upper bound to show arrowing.
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Sahni-Gonzalez 1976

%-approximation algorithm for MAX-CUT

» Main idea:

1. Pick two vertices and place one in S and one in S
2. lterate through all remaining vertices, placing them in whichever set
maximizes the current cut

> Can be extended to a 1-approximation for k sets
» P-time, greedy
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Minimum Eigenvalue Method
MAX-CUT via eigenvalues

Proposition (Alon 1996)

[E(H)|  Amin|V(H)
MC(H) < 5= — =

Proof. For graph H, let
> Amin = Smallest eigenvalue of A, the adjacency matrix of H,
» V(H)={1,2,...,n},
> x = (x1,...,%,), x; € {—1,1}.

Then

n
E : 2 E : 2 E :
(x,-—xj) — d,-xl- — aijx,-xj
=1

{iy}eEH) i#
=2|E(H)| — x"Ax ...
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Dudek-Rodl Technique, 2008

arrowing via maxcut via eigenvalues

1. For graph G, construct graph H where E(G) = V(H),
E(H) = {{e,f} | e.f € E(G), efgis a A in G for some edge g}

2. Let
IE(H)] AminlH)IV(H)
2 4 ’
B = ZIa(G)

3. If a < B,then G — (3,3)
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Example
Proving that K¢ — (3, 3)

Construct graph H from K

> |E(Ks)| = |[V(H)| =15

» ir(Kg) =20 = |E(H)| =60
Compute A\nin(H) = —2. Then

> o — EH)] Amin(Hi|V(H)| — 37.5,

2
> 38 =2tr(G) = 40.

Since a < 3, then K¢ — (3, 3)
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F.(3,3;4) < 941

Dudek-Rodl 2008

Define circulant graph G(n, r) by
> V(G) = Z,
> E(G) = {{x,y}|x—y=5"modn, 0#s€Z,}

Closeness p = ©% Lange-R-Xu 2013:
A subgraph with 860 vertices
no|r P yields p = —0.000056
127 | 3 | 0.0309
281 | 4 | 0.0423
457 | 4 | 0.0304
571 | 5 | 0.0441
701 | 5| 0.0295
937 | 6 | 0.0485
941 | 5 | -0.0127
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Example
trying to prove that Cs + K4, — (3, 3)

Let G = Cs + Ky
» Obtain V(H):
E(G)| =31 = |V(H)|

» Obtain E(H):
in(G) =54 = |E(H)| = 162

Compute:

> o — |E(2H)| _ Amin(Hé)t|V(H)| ~ 108

> 8 =2a(G) = 108

a £ 3, so this does not imply Cs + K, — (3, 3)
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Goemans-Williamson Method, 1995
approximation algorithm for MAX-CUT via SDP

» Randomized approximation algorithm

» Expected value is at least agy ~ .87856 times the optimal value
» First improvement on the 1/2 constant from Sahni-Gonzales

» Relaxes the problem to a semidefinite program
» Novel use of semidefinite programming in approximation algorithms

» Khot, Kindler and Mossel (2005): Assuming the Unique Games
Conjecture and P # NP, Goemans-Williamson approximation
algorithm is optimal
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Goemans-Williamson Method

main idea

Vv ={1,...,n}, weights w; > 0 (no edge w;; = 0),
write MC(G) as the integer quadratic program

. 1
Maximize 5 Z wii(1 — yiy;j)
1<J
subjectto: y; € {—1,1} VieV
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Goemans-Williamson Method

main idea

Relax (3), extend it to a larger space:
» think of y; as a restriction to a single dimension
» extend y; to v; € R” such that ||v;|| = 1,
> replace y;y; with y;; = v; - v,
» for matrix Y = X' X, let y; = 1 and the i-th column of X = v,.

New semidefinite program for symmetric matrix Y

. 1
Maximize 3 Z wii(1 — i) (4)
1<J
subjectto: y; = |lvi| =1 VieV
Y >0
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Goemans-Williamson Method

the algorithm

1. Solve (4) using an SDP solver  (this is all we need)

2. Decompose solution Y into X”X where X = (v, v2,...,Vy)
using Cholesky decomposition

3. Choose random, uniformly distributed vector r
4. S={i|v;-r>0}

Department of Computer Science
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Back to our example

Ky +C5 — (3, 3)7

Recall:

> o — |E(2H)| _ )\min(Hi|V(H)| ~ 108

> 3=2tr(G) = 108

The SDP solution gives an upper bound of 104
Therefore, K4, + Cs — (3, 3)

Note: the actual MAX-CUT is 102
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F.(3,3;4) < 786

construction and arrowing

Define graph L(n,s):
> V(L(n,s)) = Zy
> E(L(n,s) ) = {(u,v) |u#vandu—v=s" mod n for some
i€{0,1,2,...,m—1}}, where m is the smallest positive integer
such that s = 1 mod n.

Let L;36 be L(785,53) with one additional vertex of degree 60,
SDPLR-MC, SBmethod, and SpeeDP all give bound at most 857753,
MC (H (L786)) < 857753 < 2tA(L786) — 857762.

Therefore, L3¢ — (3,3) and F.(3, 3;4) < 786.
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Moving Forward

more techniques and problems

Minimum Eigenvalue vs. Goemans-Williamson
» Experiments show that SDP often provides better bounds
» However, MATLAB’s eigs can handle larger instances easier
» Both can fail easy instances (like all F.(3,3;5) graphs)

MinEigs | SDP

Ks Pass Pass
Kz + Cs Fail Fall
K4 + Cs Fail Pass

Other MAX-CUT Methods
» Directly solve integer program

» Rendl, Rinaldi, Wiegele: Solving Max-Cut to Optimality by
Intersecting Semidefinite and Polyhedral Relaxations
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G127

Hill-Irving 1982

G127 = (Z127,E)
E = {(x,y)}x —y=a’ (mod 127)}

Ramsey (4, 12)-graph, a color in a (4,4, 4; 127)-coloring
Exoo asked if Gj27 — (3,3)°

127 vertices, 2667 edges, 9779 triangles

no K,'s, independence number 11, regular of degree 42
vertex- and edge-transitive

5334 (= 127 x 42) automorphisms

(127,42,11, {14, 16}) - regularity

K1>7 can be partitioned into three G,7’s

vvyvyvyy
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Reducing {G | G 4 (3,3)¢} to 3-SAT

edges in G — variables of ¢
each (edge)-triangle xyz in G — add to ¢g

x+y+2)AX+y+2)

Clearly,
G /4 (3,3)° <= ¢¢ is satisfiable

For G = G127, ¢ has 2667 variables and 19558 clauses,
2 for each of the 9779 triangles.

Note: By taking only positive clauses,
we get a reduction to NAE-3-SAT with 9779 clauses.
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G127 — (3, 3)6 ?

zChaff, picosat experiments on ¢, ,,

» Pick H = G»7[S] on m = |S| vertices.
Use a SAT-solver to split H:

> m < 80, H easily splittable
> m = 83, phase transition ?
> m > 86, splitting H is very difficult

» F(clauses)/#(variables) = 7.483 for G1,7,
far above conjectured phase transition ratio r ~ 4.2 for 3-SAT.
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Moving Forward
F,(3,3;4) < 100?

Ronald Graham $100 Challenge (2012):
Determine whether F,(3,3;4) < 100

Conjecture (Exo0):
» G = G(127,3) — (3,3), moreover
» Removing 33 vertices from G»; (3 indsets of 11)

gives a G4 Which still looks good for arrowing,
if so, worth $100
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History of lower bounds on F,(3, 3; 4)

> 10 < F,(3,3;4) Lin 1972

> 16 < F,(3,3;4) Piwakowski-Urbanski-R 1999

since F.(3,3;5) = 15, all graphs in F.(3,3;5) on
15 vertices are known, and all of them contain K4’s

> 19 < F,(3,3:4) R-Xu 2007
18 < F,(3,3;4) proof "by hand"

» ANY proof technique improving on 19
very likely will be of interest
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Moving Forward

some cases to work on

Improve over 19 < F,(3,3;4) < 786

Improve over 19 < F . (Ky — e, K4 — ¢;4) < 30193
Find F.(3,3;G) for G € {K5 — e, Ws = C4 + x}
Don’t work on F,(3,3; K, — e)

F.(3,3,3;k) = 17,19,21,23,25 for k = 18, ..., 14

F,(3,3,3;13) <30 since (6-join of Cs) — (3, 3)¢, Kolev 2011
F.(3,3,3;4) < 3%'? Dudek-Frankl-Rédl 2010

E
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F,(2,; k)

includes many easier and moderate cases

F,(2,; k)
is the order of the smallest K,-free graph
with chromatic number larger than r.

This, and many other similar questions, summary of what we know,
and what people are looking for, are collected in:

New dynamic survey Small Folkman Numbers
by Christopher Wood, 2014, to appear soon!
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Vertex Folkman numbers pearls

F,(2,2,2;3) =11
the smallest 4-chromatic triangle-free graph

Grbtzsch graph [mathworld.wolfram.com]

F,(2,2,2,2;3) =22, Jensen-Royle 1995
the smallest 5-chromatic triangle-free graph has 22 vertices

-T
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Vertex Folkman numbers pearls

F,(2,2,2,2;4) = 11, Nenov 1984, also 1993
the smallest 5-chromatic K;-free graph has 11 vertices

17 < F,(4,4;5) <23, Xu-Luo-Shao 2010
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Vertex Folkman numbers pearls

Theorem (ancient folklore + £RU 2001)
F,(2,---,2;r)=r+5,forr > 5.
N——

r

Proof. For the upper bound consider

as the critical graph K,_5 + Cs + Cs

for the lower bound take any

K,—free graph G on r + 4 vertices, then

assemble matchings in G to show x(G) < r u

Theorem (Nenov 2003)
F,(3,---,3;2r)=2r+717,forr > 3.
N——

For r = 2, a small but hard case, F,(3,3;4) = 14 (PRU 1999)
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Some references

» Many by Dudek, Rodl, Rucinski, Soifer, and others ...

» Aleksander Lange, SPR, Xiaodong Xu
Use of MAX-CUT for Ramsey Arrowing of Triangles
JCMCC, 88 (2014) 6171

» SPR, Xiaodong Xu
On the Most Wanted Folkman Graph
Geombinatorics, XVI (4) (2007) 367381

» Christopher Wood
Small Folkman Numbers
in preparation, Dynamic Survey, revision #0
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Thanks for listening!
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