Some Edge Folkman Numbers

Ramsey arrowing of triangles

Stanisław Radziszowski

Department of Computer Science Rochester Institute of Technology, NY

5PCC, 22 Sep 2014

Erdős and Hajnal

Research Problem 2-5, JCT 2, p. 105, 1967

Construct a graph G which does not contain a complete hexagon such that for every coloring of the edges by two colors there is a triangle all of whose edges have the same color.

done by R.L. Graham in 1968

The proposers expect that for every cardinal m there is a graph G which contains no complete quadrilateral such that for every coloring of the edges by m colors there is a triangle all of whose edges have the same color.

proved for m = 2 by Folkman in 1970 proved in general by Nešetřil and Rödl in 1976

2/41 Ramsey Arrowing

History of the Most Wanted Folkman Number

What is the smallest order n of a K_4 -free graph which is not a union of two triangle-free graphs?

year	lower/upper bounds	who/what
1967	any?	Erdős-Hajnal
1970	exist	Folkman
1972	10 —	Lin
1975	-10^{10} ?	Erdős offers \$100 for proof
1986	$-8 imes 10^{11}$	Frankl-Rödl (almost won)
1988	-3×10^{9}	Spencer
1998	-10^{6} ?	Chung-Graham offer \$100 for the answer
1999	16 —	Piwakowski-R-Urbański (implicit)
2007	19 —	R-Xu
2008	- 9697	Lu
2008	- 941	Dudek-Rödl
2012	- 786	Lange-R-Xu
2012	- 100?	Graham offers \$100 for proof
2014	- 127?	working hard

Folkman Graphs and Numbers

For graphs F, G, H and positive integers s, t

- ► $F \rightarrow (s, t)$ iff in every 2-coloring of the edges of *F* there is a monochromatic K_s in color 1 or K_t in color 2
- ► $F \rightarrow (G, H)$ iff in every 2-coloring of the edges of *F* there is a copy of *G* in color 1 or a copy of *H* in color 2

Edge Folkman graphs

 $\mathcal{F}_e(s,t;k) = \{F \mid F \to (s,t), K_k \not\subseteq F\}$

Edge Folkman numbers

 $F_e(s, t; k) =$ the smallest order of graphs in $\mathcal{F}_e(s, t; k)$ on slide 2 we discussed $F_e(3, 3; 4)$

Theorem (Folkman 1970) If $k > \max(s, t)$, then $F_e(s, t; k)$ and $F_v(s, t; k)$ exist.

from now, all arrowing is edge-arrowing unless specified as vertex-arrowing

 $K_6
ightarrow (3,3)$

5/41 Ramsey Arrowing

R(3,3)=6

 $K_5 \not\rightarrow (3,3)$

R(3,3)=6

 $K_5 \not\rightarrow (3,3)$

R(3,3)=6

 $K_5 \not\rightarrow (3,3)$

What if we want *F* to be K_6 -free? (i.e. in $\mathcal{F}_e(3,3;6)$)

• Graham 1968: $K_6 \not\subseteq K_8 - C_5 = C_5 + K_3 \rightarrow (3,3)$

R(3,3) = 6 $K_5 \neq (3,3)$

What if we want *F* to be K_6 -free? (i.e. in $\mathcal{F}_e(3,3;6)$)

• Graham 1968: $K_6 \not\subseteq K_8 - C_5 = C_5 + K_3 \rightarrow (3,3)$

 $K_6 \rightarrow (3,3)$

 $F_e(3,3;k)$

k	$F_e(3,3;k)$	graphs	who
≥ 7	6	K_6	folklore
6	8	<i>C</i> ₅ + <i>K</i> ₃ Graham 1968	
5	15	659 graphs Piwakowski-R-Urbański 1999	
4	19 — 786	L_{786}	R-Xu 2007, Lange-R-Xu 2013

 $k > R(s,t) \implies F_e(s,t;k) = R(s,t)$

 $k \leq R(s, t)$, very little known in general

Asymptotics for Edges

Rödl, Ruciński and Schacht, 2014

Theorem 1. For all $r \ge 2$ and large k

$$f(k; r) = F_e(k_r; k+1) \le 2^{O(k^4 \log k + k^3 r \log r)}.$$

Theorem 3. For all $0 < \alpha < 1/4$ and large $k \le \alpha l$

$$f(k, l) = F_e(k, k; l) \le 2^{4k/(1-4\alpha)}$$

Challenge. Obtain any reasonable lower bound.

7/41 Ramsey Arrowing

Asymptotics for Vertices

Dudek and Rödl, 2010

Theorem 1. For all $r \ge 2$ there exists c_r , such that for all k

 $F_{v}(k_{r};k+1) \leq c_{r}n^{2}\log^{4}k.$

Theorem 2. For all $r \ge 2$ and arbitrarily small $\epsilon > 0$, there exists $c = c(r, \epsilon)$, such that for all k

 $F_{v}(k_{r}; \lceil (2+\epsilon)k \rceil) \leq ck.$

Some facts on $F_e(s, t; k)$

• $G \in \mathcal{F}_e(s, t; k) \Rightarrow$ easy, no *k* in the bound!

$$\chi(G) \geq R(s,t)$$

- \$\mathcal{F}_e(s,t;k) = R(s,t)\$ for \$k > R(s,t)\$ easy
 \$\mathcal{F}_e(s,t;R(s,t)) = R(s,t) + c\$ so, so in most cases \$c\$ is small (2, 4, 5)\$
- $\blacktriangleright \mathcal{F}_e(s,t;k) \ge R(s,t) + 4 \text{ for } k < R(s,t) \text{ hard}$
- $\blacktriangleright G \in \mathcal{F}_{v}(R(s-1,t),R(s,t-1);k-1) \Rightarrow G+x \in \mathcal{F}_{e}(s,t;k)$

or equivalently

 $G + x \not\rightarrow (s, t)^e \Rightarrow G \not\rightarrow (R(s - 1, t), R(s, t - 1))^v$, and clearly cl(G + x) = cl(G) + 1

$F_e(3,3;5) = 15$, and $F_v(3,3;4) = 14$ $G + x \to (3,3)^e$, and $G \to (3,3)^v$

unique 14-vertex bicritical $F_{\nu}(3,3;4)$ -graph G [PRU 1999]

10/41 Ramsey Arrowing

Arrowing is Hard

more difficult for edges than vertices

Complexity

- ▶ Determining if $F \rightarrow (3,3)^e$ is **coNP**-complete, Burr 1976
- ► Testing $F \rightarrow (G, H)^e$ is Π_2^P -complete, Schaefer 2001

Leads to Ramsey numbers

 $R(s,t) = \min\{n \mid K_n \to (s,t)\}$

$$43 \leq R(5,5) \leq 49: \quad K_{42} \not\rightarrow (5,5)^e, K_{49} \rightarrow (5,5)^e$$

Arrowing triangles reduces to 3-SAT (actually, 3-NAE-SAT) For all (edge) triangles *xyz*, we add the clauses $(x \lor y \lor z)$ and $(\overline{x} \lor \overline{y} \lor \overline{z})$ to ϕ . Then

 $G
eq (3,3)^e$ iff $\phi(G)$ is satisfiable

Counting Triangles

in order to deduce $F \rightarrow (3,3)^e$

For any blue-red edge coloring of graph G, let

- ► $T_{BB}(v)$, $T_{RR}(v)$, and $T_{BR}(v)$ count triangles *vuw* where $\{v, u\}$ and $\{v, w\}$ are blue-blue, red-red, and blue-red
- T_{blue}, T_{red}, and T_{blue-red} count the number of all blue, red and blue-red triangles

Then

$$\blacktriangleright \sum_{v \in V(G)} T_{\mathsf{BR}}(v) = 2T_{\mathsf{blue-red}}$$

$$\blacktriangleright \sum_{v \in V(G)} \left(T_{\mathsf{BB}}(v) + T_{\mathsf{RR}}(v) \right) = 3(T_{\mathsf{blue}} + T_{\mathsf{red}}) + T_{\mathsf{blue}}$$

Counting Triangles

in order to deduce $F \rightarrow (3,3)^e$

This leads to

$$\sum_{v \in V(G)} T_{\mathsf{BR}}(v) = \left(2\sum_{v \in V(G)} T_{\mathsf{BB}}(v) + T_{\mathsf{RR}}(v)\right) - 6(T_{\mathsf{blue}} + T_{\mathsf{red}}).$$

 $G \rightarrow (3,3)$ iff $T_{\sf blue} + T_{\sf red} > 0$ for every coloring

S0,

 $G \rightarrow (3,3)$ iff for every coloring

$$\sum_{v \in V(G)} T_{\mathsf{BR}}(v) < 2 \sum_{v \in V(G)} \left(T_{\mathsf{BB}}(v) + T_{\mathsf{RR}}(v) \right)$$
(1)

From Arrowing to MAX-CUT

only edge-arrowing for a while

A *cut* of *G* is a bipartition of its vertices, $S \subseteq V(G)$, $\overline{S} = V(G) \setminus S$,

the *size* of a cut is $|\{ \{u, v\} \in E(G) \mid u \in S, v \in \overline{S} \}|$,

let MC(G) be the **maximum cut** size of G.

Theorem: (Frankl-Rödl 1986, Spencer 1988) If $\sum_{v \in V(G)} MC(G[N(v)]) < \frac{2}{3} \sum_{v \in V(G)} |(G[N(v)])|,$

then $G \rightarrow (3,3)$.

From Arrowing to MAX-CUT

another way to count

Define graph H

$$V(H) = E(G),$$

 $E(H) = \{\{e, f\} \mid e, f \in E(G), efg \text{ is a } \triangle \text{ in } G \text{ for some edge } g\}.$

Then $|E(H)| = 3t_{\triangle}(G)$

$$4 \leq MC(H) \leq 6, t_{\triangle}(G) = 3$$

Theorem: (Dudek-Rödl 2008)

$$G
ightarrow (3,3)$$
 iff $MC(H) < 2t_{ riangle}(G)$

(2)

MAX-CUT Problem

MAX-CUT(H, k)

For graph H and integer k, is there a cut of H whose size is at least k?

One of Karp's original NP-complete problems (Karp 1972)

Dudek-Rödl theorem gives:

$$G \rightarrow (3,3)$$
 iff **MAX-CUT** $(H, 2t_{\triangle}(G)) = \mathsf{NO}$

We will approximate the upper bound to show arrowing.

Sahni-Gonzalez 1976

 $\frac{1}{2}$ -approximation algorithm for MAX-CUT

- Main idea:
 - 1. Pick two vertices and place one in *S* and one in \overline{S}
 - 2. Iterate through all remaining vertices, placing them in whichever set maximizes the current cut
- Can be extended to a $\frac{1}{k}$ -approximation for k sets
- P-time, greedy

Minimum Eigenvalue Method

MAX-CUT via eigenvalues

Proposition (Alon 1996)

$$MC(H) \leq \frac{|E(H)|}{2} - \frac{\lambda_{\min}|V(H)|}{4}$$

Proof. For graph *H*, let

$$\triangleright$$
 $\lambda_{\min} =$ smallest eigenvalue of *A*, the adjacency matrix of *H*,

Then

$$\sum_{\{i,j\}\in E(H)} (x_i - x_j)^2 = \sum_{i=1}^n d_i x_i^2 - \sum_{i\neq j} a_{ij} x_i x_j$$
$$= 2|E(H)| - \mathbf{x}^T A \mathbf{x} \dots$$

Dudek-Rödl Technique, 2008

arrowing via maxcut via eigenvalues

 For graph *G*, construct graph *H* where *E*(*G*) = *V*(*H*), *E*(*H*) = {{*e*,*f*} | *e*,*f* ∈ *E*(*G*), *efg* is a △ in G for some edge *g*}
 Let

$$\alpha = \frac{|E(H)|}{2} - \frac{\lambda_{\min}(H)|V(H)|}{4},$$

$$\beta = 2t_{\triangle}(G)$$

3. If $\alpha < \beta$, then $G \rightarrow (3,3)$

Example Proving that $K_6 \rightarrow (3,3)$

Construct graph *H* from K_6

$$|E(K_6)| = |V(H)| = 15$$

$$t_{\triangle}(K_6) = 20 \implies |E(H)| = 60$$

Compute $\lambda_{\min}(H) = -2$. Then

$$\alpha = \frac{|E(H)|}{2} - \frac{\lambda_{\min}(H)|V(H)|}{4} = 37.5,$$

$$\beta = 2t_{\triangle}(G) = 40.$$

Since $\alpha < \beta$, then $K_6 \rightarrow (3,3)$

$F_e(3,3;4) \le 941$ Dudek-Rödl 2008

Define circulant graph G(n, r) by

$$\blacktriangleright$$
 $V(G) = \mathbb{Z}_n$

$$\blacktriangleright E(G) = \{ \{x, y\} \mid x - y = s^r \mod n, \ 0 \neq s \in \mathbb{Z}_n \}$$

Closeness
$$\rho = \frac{\alpha - \beta}{\alpha}$$

Lange-R-Xu 2013:

n	r	ρ	
127	3	0.0309	
281	4	0.0423	
457	4	0.0304	
571	5	0.0441	
701	5	0.0295	
937	6	0.0485	
941	5	-0.0127	

A subgraph with 860 vertices yields $\rho = -0.000056$

Example

trying to prove that $C_5 + K_4 \rightarrow (3,3)$

Let
$$G = C_5 + K_4$$

• Obtain V(H):

$$|E(G)| = 31 = |V(H)|$$

• Obtain E(H):

$$t_{\bigtriangleup}(G) = 54 \implies |E(H)| = 162$$

Compute:

$$\alpha = \frac{|E(H)|}{2} - \frac{\lambda_{\min}(H)|V(H)|}{4} > 108$$
$$\beta = 2t_{\triangle}(G) = 108$$

 $\alpha \not< \beta$, so this does not imply $C_5 + K_4 \rightarrow (3,3)$

Goemans-Williamson Method, 1995

approximation algorithm for MAX-CUT via SDP

- Randomized approximation algorithm
- Expected value is at least $\alpha_{GW} \approx .87856$ times the optimal value
 - First improvement on the 1/2 constant from Sahni-Gonzales
- Relaxes the problem to a semidefinite program
 - Novel use of semidefinite programming in approximation algorithms
- ▶ Khot, Kindler and Mossel (2005): Assuming the Unique Games Conjecture and $P \neq NP$, Goemans-Williamson approximation algorithm is optimal

Goemans-Williamson Method

main idea

 $V = \{1, ..., n\}$, weights $w_{ij} \ge 0$ (no edge $w_{ij} = 0$), write MC(G) as the integer quadratic program

Maximize
$$\frac{1}{2} \sum_{i < j} w_{ij} (1 - y_i y_j)$$
 (3)

subject to: $y_i \in \{-1, 1\} \quad \forall i \in V$

Cut $S = \{i \mid y_i = 1\}.$

Goemans-Williamson Method

main idea

Relax (3), extend it to a larger space:

- \blacktriangleright think of y_i as a restriction to a single dimension
- extend y_i to $\mathbf{v}_i \in \mathbb{R}^n$ such that $\|\mathbf{v}_i\| = 1$,
- ► replace $y_i y_j$ with $y_{ij} = \mathbf{v}_i \cdot \mathbf{v}_j$,
- ▶ for matrix $Y = X^T X$, let $y_{ii} = 1$ and the *i*-th column of $X = \mathbf{v}_i$.

New semidefinite program for symmetric matrix *Y*:

Maximize
$$\frac{1}{2} \sum_{i < j} w_{ij} (1 - y_{ij})$$
 (4)
subject to: $y_{ii} = ||\mathbf{v}_i|| = 1 \quad \forall i \in V$
 $Y \succeq 0$

Goemans-Williamson Method

the algorithm

- 1. Solve (4) using an SDP solver (this is all we need)
- 2. Decompose solution *Y* into $X^T X$ where $X = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n})$ using Cholesky decomposition
- 3. Choose random, uniformly distributed vector **r**

$$4. S = \{i \mid \mathbf{v}_i \cdot \mathbf{r} \ge 0\}$$

Back to our example

 $K_4 + C_5 \rightarrow (3,3)$?

Recall: $\alpha = \frac{|E(H)|}{2} - \frac{\lambda_{\min}(H)|V(H)|}{4} > 108$ $\beta = 2t_{\triangle}(G) = 108$

The SDP solution gives an upper bound of **104** Therefore, $K_4 + C_5 \rightarrow (3,3)$

Note: the actual MAX-CUT is 102

 $F_e(3,3;4) \le 786$ construction and arrowing

Define graph L(n, s):

- $\blacktriangleright V(L(n,s)) = \mathbb{Z}_n$
- ► $E(L(n,s)) = \{(u,v) \mid u \neq v \text{ and } u v \equiv s^i \mod n \text{ for some} i \in \{0, 1, 2, ..., m 1\}\}$, where *m* is the smallest positive integer such that $s^m \equiv 1 \mod n$.

Let L_{786} be L(785, 53) with one additional vertex of degree 60,

SDPLR-MC, SBmethod, and SpeeDP all give bound at most 857753,

$$MC(H(L_{786})) \le 857753 < 2t_{\triangle}(L_{786}) = 857762.$$

Therefore, $L_{786} \rightarrow (3,3)$ and $F_e(3,3;4) \le 786$.

Moving Forward

more techniques and problems

Minimum Eigenvalue vs. Goemans-Williamson

- Experiments show that SDP often provides better bounds
- However, MATLAB's eigs can handle larger instances easier
- Both can fail easy instances (like all $F_e(3,3;5)$ graphs)

	MinEigs	SDP
K_6	Pass	Pass
$K_3 + C_5$	Fail	Fail
$K_4 + C_5$	Fail	Pass

Other MAX-CUT Methods

- Directly solve integer program
- Rendl, Rinaldi, Wiegele: Solving Max-Cut to Optimality by Intersecting Semidefinite and Polyhedral Relaxations

G_{127} Hill-Irving 1982

 $G_{127} = (\mathcal{Z}_{127}, E)$ $E = \{(x, y) | x - y = \alpha^3 \pmod{127}\}$

Ramsey (4, 12)-graph, a color in a (4, 4, 4; 127)-coloring Exoo asked if $G_{127} \rightarrow (3, 3)^e$

- 127 vertices, 2667 edges, 9779 triangles
- \blacktriangleright no K_4 's, independence number 11, regular of degree 42
- vertex- and edge-transitive
- ▶ 5334 (= 127 * 42) automorphisms
- (127, 42, 11, {14, 16}) regularity
- K_{127} can be partitioned into three G_{127} 's

Reducing $\{G \mid G \not\rightarrow (3,3)^e\}$ to 3-SAT

edges in $G \mapsto$ variables of ϕ_G each (edge)-triangle xyz in $G \mapsto$ add to ϕ_G

$$(x+y+z) \wedge (\overline{x}+\overline{y}+\overline{z})$$

Clearly,

 $G \not\rightarrow (3,3)^e \iff \phi_G$ is satisfiable

For $G = G_{127}$, ϕ_G has 2667 variables and 19558 clauses, 2 for each of the 9779 triangles.

Note: By taking only positive clauses, we get a reduction to NAE-3-SAT with 9779 clauses.

 $G_{127}
ightarrow (3,3)^e$? zChaff, picosat experiments on $\phi_{G_{127}}$

- Pick H = G₁₂₇[S] on m = |S| vertices. Use a SAT-solver to split H:
 - ▶ $m \le 80$, *H* easily splittable
 - ▶ $m \approx 83$, phase transition ?
 - ▶ $m \ge 86$, splitting *H* is very difficult
- ► #(clauses)/#(variables) = 7.483 for G_{127} , far above conjectured phase transition ratio $r \approx 4.2$ for 3-SAT.

Moving Forward $F_e(3,3;4) \leq 100$?

Ronald Graham \$100 Challenge (2012): Determine whether $F_e(3, 3; 4) \le 100$

Conjecture (Exoo):

- $G_{127} = G(127, 3) \rightarrow (3, 3)$, moreover
- Removing 33 vertices from G₁₂₇ (3 indsets of 11) gives a G₉₄ which still looks good for arrowing, if so, worth \$100

History of lower bounds on $F_e(3, 3; 4)$

- ▶ $10 \le F_e(3,3;4)$ Lin 1972
- ▶ $16 \le F_e(3,3;4)$ Piwakowski-Urbański-R 1999 since $F_e(3,3;5) = 15$, all graphs in $\mathcal{F}_e(3,3;5)$ on 15 vertices are known, and all of them contain K_4 's
- $19 \leq F_e(3,3;4)$ $18 \leq F_e(3,3;4)$ R-Xu 2007

 proof "by hand"
- ANY proof technique improving on 19 very likely will be of interest

Moving Forward

some cases to work on

Improve over $19 \le F_e(3, 3; 4) \le 786$

Improve over $19 \le F_e(K_4 - e, K_4 - e; 4) \le 30193$

Find $F_e(3,3;G)$ for $G \in \{K_5 - e, W_5 = C_4 + x\}$

Don't work on $F_e(3,3;K_4-e)$

 $F_e(3,3,3;k) = 17, 19, 21, 23, 25$ for k = 18, ..., 14 $F_e(3,3,3;13) \le 30$ since (6-join of $C_5) \to (3,3)^e$, Kolev 2011 $F_e(3,3,3;4) \le 3^{3^4}$? Dudek-Frankl-Rödl 2010

 $F_v(2_r; k)$ includes many easier and moderate cases

 $F_{v}(2_{r};k)$ is the order of the smallest K_{k} -free graph with chromatic number larger than r.

This, and many other similar questions, summary of what we know, and what people are looking for, are collected in:

New dynamic survey *Small Folkman Numbers* by Christopher Wood, 2014, to appear soon!

Vertex Folkman numbers pearls

 $F_{\nu}(2, 2, 2; 3) = 11$ the smallest 4-chromatic triangle-free graph

Grőtzsch graph [mathworld.wolfram.com]

 $F_{\nu}(2, 2, 2, 2; 3) = 22$, Jensen-Royle 1995 the smallest 5-chromatic triangle-free graph has 22 vertices

37/41 Moving Forward

Vertex Folkman numbers pearls

 $F_v(2, 2, 2, 2; 4) = 11$, Nenov 1984, also 1993 the smallest 5-chromatic K_4 -free graph has 11 vertices

 $17 \le F_{\nu}(4,4;5) \le 23$, Xu-Luo-Shao 2010

38/41 Moving Forward

Vertex Folkman numbers pearls

Theorem (ancient folklore +
$$\&$$
RU 2001)
 $F_v(\underbrace{2, \cdots, 2}_r; r) = r + 5$, for $r \ge 5$.

Proof. For the upper bound consider as the critical graph $K_{r-5} + C_5 + C_5$ for the lower bound take any K_r -free graph *G* on r + 4 vertices, then assemble matchings in \overline{G} to show $\chi(G) \leq r$

Theorem (Nenov 2003) $F_{v}(\underbrace{3, \cdots, 3}_{r}; 2r) = 2r + 7$, for $r \ge 3$. For r = 2, a small but hard case, $F_{v}(3, 3; 4) = 14$ (PRU 1999)

Some references

Many by Dudek, Rödl, Ruciński, Soifer, and others ...

Aleksander Lange, SPR, Xiaodong Xu Use of MAX-CUT for Ramsey Arrowing of Triangles JCMCC, 88 (2014) 61–71

 SPR, Xiaodong Xu
 On the Most Wanted Folkman Graph Geombinatorics, XVI (4) (2007) 367–381

Christopher Wood Small Folkman Numbers in preparation, Dynamic Survey, revision #0

Thanks for listening!

41/41 Moving Forward