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Introduction

Consider tiling a floor with square tiles, all of the same size. Is it
the case that any gap-free tiling results in at least two fully
connected tiles, i.e., tiles that have an entire edge in common?
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Keller’s Conjecture

In 1930, Ott-Heinrich Keller
conjectured that this phenomenon
holds in every dimension.

Keller’s Conjecture. For all n ≥ 1,
every tiling of n-dimensional space
with unit cubes has two which
fully share a face.

[Wikipedia, CC BY-SA]
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Dimensions Resolved

I In 1940, Perron proved that Keller’s conjecture is true for
1 ≤ n ≤ 6.

I In 1992, Lagarias and Shor showed that Keller’s conjecture is
false for n ≥ 10.

I In 2002, Mackey showed that Keller’s conjecture is false for
n ≥ 8.

What about dimension 7?
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Main Result

Theorem (Brakensiek, Heule, Mackey, and Narváez, 2020).
Keller’s conjecture is true in dimension 7.

I Ends the 90 year quest to resolve Keller’s conjecture in all
dimensions.

I Proof involves resolving a maximum clique question about
Keller graphs using SAT solving.

I The SAT formula is very difficult to solve, required extensive
symmetry breaking.

I Total proof size is over 200 gigabytes! Verified by a proof
checker.
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Formal Description

I We define the Keller graph Gn,s to has (2s)n vertices/cubes.
Each has n dimensions/dots have one of 2s colors which come
in complementary pairs: e.g. black/white and red/green.

I Two vertices are adjacent if and only if 1) at least one
corresponding dimension/dot has a complementary pair of
colors; and 2) they differ in at least two dimensions/dots.

I Corrádi and Szabó’s work (1990) showed that there is a
counterexample to Keller’s conjecture in some dimension n if
one can show Gn,s has a clique of size 2n.
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From Keller’s Conjecture to Graph Theory: G2,2
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Towards Resolving Dimension 7

I To confirm Keller’s conjecture in dimension 7, one needs to
prove that G7,64 does not have a clique of size 27 = 128.

I Between 2013 and 2017,  Lysakowska and Kisielewicz showed
that if one of G7,3, G7,4 or G7,6 has no clique of size 27, then
Keller’s conjecture is true in dimension 7.
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Succinct Encoding: Groups

Gn,s can be partitioned into 2n independent sets (groups)

Key Observation: If there is a clique of size 2n, each group has
exactly one vertex in the clique.
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Succint Encoding: Under the Hood

The colors represent numbers, k and s + k are complementary
colors.

Let n = 5 and s = 4. Consider a vertex:

v = (6, 1, 5, 0, 2)

and look at what positions have values at least 4:

v = (6, 1, 5, 0, 2)

Say (1, 0, 1, 0, 0) is the “characteristic vector” of v : two vertices
with the same characteristic vector cannot be connected.
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Succint Encoding: Under the Hood

The colors represent numbers, k and s + k are complementary
colors.

Let n = 5 and s = 4. Consider a vertex:

v = (6, 1, 5, 0, 2)

and look at what positions have values at least 4:

v = (6, 1, 5, 0, 2)

Say (1, 0, 1, 0, 0) is the “characteristic vector” of v : two vertices
with the same characteristic vector cannot be connected.

Brakensiek, Heule, Mackey, and Narváez 13 / 29
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Succint Encoding: Under the Hood

I There are 2n possible characteristic vectors, identified by a
corresponding binary number (LSB first):
I v = (6, 1, 5, 0, 2) is in group 5.

I We build a clique by picking a vertex from each group.
I Variables: xv ,d ,c encodes vertex picked from group v at

dimension/dot d has color/value c .
I If v in base 2 has digit 1 in position d , the value is s + c .

Brakensiek, Heule, Mackey, and Narváez 14 / 29
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Succint Encoding: Under the Hood

I There are 2n possible characteristic vectors, identified by a
corresponding binary number (LSB first):
I v = (6, 1, 5, 0, 2) is in group 5.

I We build a clique by picking a vertex from each group.
I Variables: xv ,d ,c encodes vertex picked from group v at

dimension/dot d has color/value c .
I If v in base 2 has digit 1 in position d , the value is s + c .

Brakensiek, Heule, Mackey, and Narváez 14 / 29



Succinct Encoding: Constraints

I First, every dimension/dot must have exactly one color.
(xv ,d ,0 ∨ xv ,d ,1 ∨ · · · ∨ xv ,d ,s−1) ∧

∧
c 6=c ′(x̄v ,d ,c ∨ x̄v ,d ,c ′)

I Second, each pair of vertices must have different colors/values
in some other dimension/dot.
I Note that this only matters for pairs of vertices v , v ′ such that

v ⊕ v ′ has only one bit.

I Third, each pair of vertices must have complementary
colors/values in some dimension/dot.
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Encoding Size

Keller Graph Cube Count Variable Count Clause Count

G7,3 279 936 39 424 200 320
G7,4 2 097 152 43 008 265 728
G7,6 35 831 808 50 176 399 232

the number of clauses is smaller than the number of cubes
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Clausal Proofs of Unsatisfiability

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

I Checking the redundancy of a clause in polynomial time

I Clausal proofs are easy to emit from modern SAT solvers

I Symmetry breaking can be expressed using clausal proofs
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Symmetry Breaking Overview

The symmetry breaking consists of three parts:

1. Manual proof that we can assume two 5-facesharing cubes and
a third, mostly colored cube:

2. Clausal proof that we have the following three additional cubes:

3. Enumerate and filter all options for the rainbow dimensions/dots

Brakensiek, Heule, Mackey, and Narváez 19 / 29
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Symmetry Breaking: Under the Hood

The 6 vertices involved in the previous slide are:

c0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 )
c1 = (s , 1 , 0 , 0 , 0 , 0 , 0 )
c3 = (s , s + 1 , ?s , ?s , 1 , 1 , 1 )
c19 = (s , s + 1 , ?s , ?s , s + 1 , ?s , ?s )
c35 = (s , s + 1 , ?s , ?s , ?s , s + 1 , ?s )
c67 = (s , s + 1 , ?s , ?s , ?s , ?s , s + 1)

(Note that the 4th cube corresponding to c19 has one extra rainbow dot.)

We will focus in the 3× 3 matrix at the bottom-right corner.
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Symmetry Breaking: Under the Hood

The 6 vertices involved in the previous slide are:

c0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 )
c1 = (s , 1 , 0 , 0 , 0 , 0 , 0 )
c3 = (s , s + 1 , ?s , ?s , 1 , 1 , 1 )
c19 = (s , s + 1 , ?s , ?s , s + 1 , ?s , ?s )
c35 = (s , s + 1 , ?s , ?s , ?s , s + 1 , ?s )
c67 = (s , s + 1 , ?s , ?s , ?s , ?s , s + 1)

(Note that the 4th cube corresponding to c19 has one extra rainbow dot.)

We will focus in the 3× 3 matrix at the bottom-right corner.

Brakensiek, Heule, Mackey, and Narváez 20 / 29



Symmetry Breaking: Under the Hood

We will focus in the 3× 3 matrix at the bottom-right corner:

5 6 7

c19 s + 1 ?s ?s
c35 ?s s + 1 ?s
c67 ?s ?s s + 1

I Näıvely: s6 cases to try. We want to do much better.
I First observation: one of c19,6 or c35,5 have to be 1.

I Add 3 clauses (x19,6,1 ∨ x35,5,1), (x35,7,1 ∨ x67,6,1),
(x67,5,1 ∨ x19,7,1) to the proof.

I No need to justify these clauses: their negation leads to a
contradiction.

I Takes care of 3(s − 1)2s4 − 3(s − 1)4s2 + (s − 1)6.
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Symmetry Breaking: Under the Hood

Next we look at symmetric configurations:

5 6 7
c19 s + 1 1 2
c35 2 s + 1 2
c67 1 1 s + 1

5 6 7
c19 s + 1 1 1
c35 2 s + 1 1
c67 2 2 s + 1

Game plan:

I Enumerate all (2s − 1)3 remaining matrices and group them
by canonical representative.

I Block all remaining matrices except the canonical
representative.
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Symmetry Breaking: Under the Hood

Matrix symmetries are just (vertex-colored) graph symmetries:

s + 1

2

1

1

s + 1

1

2

2

s + 1

r1

r2

r3

c1 c2 c3
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Symmetry Breaking: Under the Hood

For a matrix M and a canonical matrix M ′ symmetrical to M:

I We block the configuration M using M ′ as a justification.
I We use a proof system that allows to add clauses to the proof,

together with a justification.
I Marijn J.H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere.

PRuning Through Satisfaction.

HVC 2017, pp. 179-194. LNCS 10629, Springer.

I In addition to the PR system, this proof system allows for
including a permutation as part of the justification.

After all symmetries have been broken, we can assume c19,6 = 1.
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Case Split

Given the cubes, in how many ways can we color rainbow dots?

Worst case for n rainbow dots without symmetry breaking is sn

With symmetry breaking these can be reduced to:

I s = 3: 21 525 (instead of 313 = 1 594 323)

I s = 4: 37 128 (instead of 413 = 67 108 864)

I s = 6: 38 584 (instead of 613 = 13 060 694 016)
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Conclusions

We resolved the remaining case of Keller’s conjecture

I No clique of size 128 in G7,3, G7,4, G7,6

I Designed a SAT compact encoding

I Combined parallel SAT solver and symmetry breaking

I Constructed a clausal proof of unsatisfiability

I Certified the proof with a formally-verified checker
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Future Work

Towards a full formal proof of Keller’s conjecture:

I Formalize Keller’s conjecture

I Prove the relation between Keller graphs and the conjecture

I Prove the correctness of the encoding

I Solve the case G7,64 directly

Open questions:

I What is the largest clique in G7,3, G7,4, G7,6?

I Is the clique of 256 in G8,2 unique (modulo symmetries)?

I Why is there a transition between dimensions 7 and 8?
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I Why is there a transition between dimensions 7 and 8?
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Fin: A Clique of Size 256 in G8,2 [Mackey, 2002]
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	A Brief History of Keller's Conjecture
	Keller Graphs and Maximum Cliques
	Encoding Keller's Conjecture into SAT
	Proofs and Symmetry Breaking
	Conclusions and Future Work

