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Introduction
Constraint Satisfaction Techniques

Constraint Satisfaction Techniques try to find models that satisfy a
set of constraints.

Constraint Satisfaction Problems (CSPs) can be of several types, each
type called a paradigm.
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Encoding Combinatorial Problems via CSPs
Overall Strategy

Phases:

Find a suitable constraint satisfaction paradigm.

Devise a formula that represents the combinatorial problem in the
selected paradigm.

Encode the problem as a formula.

Use a solver for the selected paradigm.

If satisfiable: decode the satisfying assignment.
If unsatisfiable: provide a proof of unsatisfiability.
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Encoding Combinatorial Problems as a CSP
But Why?

High availability of solvers, developed independently from problem
encodings.

Several success stories in the last few years.

Results are independently verifiable.
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Encoding Combinatorial Problems as SAT
Running Examples

We will be proving theorems in Ramsey theory. Here are some definitions:

Kn is the complete graph on n vertices.

Jn = Kn − e is the complete graph minus one edge.

The notation G → (H1,H2) means that:
In any coloring of the edges of G with two colors,
there will be an H1 in the 1st color or an H2 in the 2nd color.

The Ramsey number R(H1,H2) is the order of the smallest Kn such
that Kn → (H1,H2).
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Encoding Combinatorial Problems as SAT
Running Example

The Ramsey number R(K3,K3) is order of the smallest Kn such that
Kn → (K3,K3).

Figure: Two ways to color the edges of K4.

Note there are no triangles in the coloring to the right, so R(K3,K3) > 4.
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Encoding Combinatorial Problems as SAT
Running Example

Theorem: R(K3,K3) = 6

We need to prove two things:

There is a coloring of K5 that has no triangles of the same color.

There is not a coloring of K6 that has no triangles of the same color.
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Encoding Combinatorial Problems as SAT
Running Example

Theorem: R(K3,K3) = 6

Phases:

Find a suitable constraint satisfaction paradigm.

Devise a formula that represents the combinatorial problem in the
selected paradigm.

Encode the problem as a formula.

Use a solver for the selected paradigm.

If satisfiable: decode the satisfying assignment.
If unsatisfiable: provide a proof of unsatisfiability.
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Boolean Satisfiability (SAT)

Boolean formulas in conjunctive normal form (CNF), i.e., restricted to
conjunctions (∧) of disjunctions (∨). Ex:

(x ∨ y ∨ z) ∧ (x ∨ y)

The variables are x , y and z .

The literals are the variables and their negations, e.g., z .

Each disjunction is called a clause.

x ∨ y ∨ z
x ∨ y

A formula is satisfiable if there is an assignment of the variables such
that the formula evaluates to true.

It is unsatisfiable otherwise.

David E. Narváezden9562@rit.edu Theorem Proving Using Constraint SatisfactionTopics in Advanced Algorithms, Spring 2021 9 / 26

den9562@rit.edu


Boolean Satisfiability (SAT)

Boolean formulas in conjunctive normal form (CNF), i.e., restricted to
conjunctions (∧) of disjunctions (∨). Ex:

(x ∨ y ∨ z) ∧ (x ∨ y)

The variables are x , y and z .

The literals are the variables and their negations, e.g., z .

Each disjunction is called a clause.

x ∨ y ∨ z
x ∨ y

A formula is satisfiable if there is an assignment of the variables such
that the formula evaluates to true.

It is unsatisfiable otherwise.

David E. Narváezden9562@rit.edu Theorem Proving Using Constraint SatisfactionTopics in Advanced Algorithms, Spring 2021 9 / 26

den9562@rit.edu


Encoding Combinatorial Problems as SAT
Running Example

Theorem: R(K3,K3) = 6

Phases:

Find a suitable constraint satisfaction paradigm.

Devise a formula that represents the combinatorial problem in the
selected paradigm.

Encode the problem as a formula.

Use a solver for the selected paradigm.

If satisfiable: decode the satisfying assignment.
If unsatisfiable: provide a proof of unsatisfiability.
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Encoding Combinatorial Problems as SAT
Running Example

Assign a Boolean variable to each edge:

xi ,j represents the color of the edge between vertices i and j .

If the value of xi ,j is true, we color the edge between i and j red.

If the value of xi ,j is false, we color the edge between i and j blue.

For every triple of vertices i , j , k, the edges between them are a potential
triangle, so:

At least one of the edges has to be red ⇒ at least one of xi ,j , xj ,k ,
xi ,k has to be true.

(xi ,j ∨ xj ,k ∨ xi ,k)

At least one of the edges has to be blue ⇒ at least one of xi ,j , xj ,k ,
xi ,k has to be false.

(xi ,j ∨ xj ,k ∨ xi ,k)
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Encoding Combinatorial Problems as SAT
Running Example

The formula we need is:

FN = ∀ i < j < k < N. (xi ,j ∨ xj ,k ∨ xi ,k) ∧ (xi ,j ∨ xj ,k ∨ xi ,k)

FN is satisfiable if and only if KN can be colored in a way that avoids
triangles of the same color.

We need to prove two things:

There is a coloring of K5 that has no triangles of the same color
⇒ F5 is satisfiable.

There is not a coloring of K6 that has no triangles of the same color
⇒ F6 is unsatisfiable.
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Encoding Combinatorial Problems as SAT
Running Example

Enter Python 3 and itertools.

$ python3

Python 3.7.8 (default, Aug 26 2020, 17:06:51)

[GCC 8.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import itertools

>>> for c in itertools.combinations([’a’, ’b’, ’c’, ’d’], 2):

... print(c)

...

(’a’, ’b’)

(’a’, ’c’)

(’a’, ’d’)

(’b’, ’c’)

(’b’, ’d’)

(’c’, ’d’)
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Encoding Combinatorial Problems as SAT
Running Example

Theorem: R(K3,K3) = 6

Phases:

Devise a Boolean formula that represents the combinatorial problem.

Convert the formula to CNF.

Encode the problem as a CNF formula.

Use a SAT solver.

If satisfiable: decode the satisfying assignment.
If unsatisfiable: provide a proof of unsatisfiability.
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Encoding Combinatorial Problems as SAT
Running Example

0

1

2

3

4

Figure: The satisfying assignment for K5.
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Encoding Combinatorial Problems as SAT
Running Example

Theorem: R(K3, J4) = 7

We need to prove two things:

There is a coloring of K6 that has no K3 in the first color and no J4 in
the second color.

There is not a coloring of K7 that has no K3 in the first color and no
J4 in the second color.
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David E. Narváezden9562@rit.edu Theorem Proving Using Constraint SatisfactionTopics in Advanced Algorithms, Spring 2021 18 / 26

den9562@rit.edu


Encoding Combinatorial Problems as SAT
Running Example

Take a closer look at the Boolean constraints for J4: at least 2 of the
(4

2

)
edges of K4 are not blue.

∀i1 < i2 < i3 < i4. (xi1,i2 ∧ xi2,i3) ∨ (xi1,i2 ∧ xi2,i4) ∨ (xi1,i2 ∧ xi1,i3)

∨ (xi1,i2 ∧ xi1,i4) ∨ (xi1,i2 ∧ xi2,i3) ∨ (xi2,i3 ∧ xi2,i4)

∨ (xi2,i3 ∧ xi2,i4) ∨ (xi2,i3 ∧ xi2,i4) ∨ (xi2,i3 ∧ xi1,i4)

...

Disjunction of
(6

2

)
conjunctions, so not in CNF.

Fortunately, the presence of J4 can be entirely characterized by the
number of edges present.
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Pseudo-Boolean Satisfiability (PB)

Collection of pseudo-Boolean constraints of the form
∑

ci ∗ xi ≥ li , where
xi is either 0 or 1 and ci is an integer. E.g.:

3x + 2y +−1z ≥ 5

Note that CNF clauses
(x ∨ y ∨ z) ∧ (x ∨ y)

can be interpreted as:

1x + 1y + (1− z) ≥ 1

(1− x) + (1− y) ≥ 1

A PB formula is satisfiable if there is an assignment of the variables
that satisfies every inequality.

It is unsatisfiable otherwise.
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David E. Narváezden9562@rit.edu Theorem Proving Using Constraint SatisfactionTopics in Advanced Algorithms, Spring 2021 20 / 26

den9562@rit.edu


Pseudo-Boolean Satisfiability (PB)

Collection of pseudo-Boolean constraints of the form
∑

ci ∗ xi ≥ li , where
xi is either 0 or 1 and ci is an integer. E.g.:

3x + 2y +−1z ≥ 5

Note that CNF clauses
(x ∨ y ∨ z) ∧ (x ∨ y)

can be interpreted as:

1x + 1y + (1− z) ≥ 1

(1− x) + (1− y) ≥ 1

A PB formula is satisfiable if there is an assignment of the variables
that satisfies every inequality.

It is unsatisfiable otherwise.

David E. Narváezden9562@rit.edu Theorem Proving Using Constraint SatisfactionTopics in Advanced Algorithms, Spring 2021 20 / 26

den9562@rit.edu


Encoding Combinatorial Problems as SAT
Running Example

Theorem: R(K3, J4) = 7

Phases:

Find a suitable constraint satisfaction paradigm.

Devise a formula that represents the combinatorial problem in the
selected paradigm.

Encode the problem as a formula.

Use a solver for the selected paradigm.

If satisfiable: decode the satisfying assignment.
If unsatisfiable: provide a proof of unsatisfiability.
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Encoding Combinatorial Problems as SAT
Running Example

The formula we need is:

FN =∀ i < j < k < N.

− 1xi ,j +−1xj ,k +−1xi ,k ≥ −2

∀ i1 < i2 < i3 < i4 < N.

1xi1,i2 + 1xi1,i3 + 1xi1,i4 + 1xi2,i3 + 1xi2,i4 + 1xi3,i4 ≥ 2

FN is satisfiable if and only if KN can be colored in a way that avoids K3

in the first color and J4 in the second color.
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Thanks!
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