Backtracking Algorithms

1dom instances of the

1.13 is applied with
4]
thm 4.13
REDUCEBOUND
18
' 1,287
53,486
1,326,640

(n?) by Algorithm 4.11.
: 0(n?). Algorithm4.13
1 problem that incorpo-

MINEDGEBOUND and
.ed random instances of
vertices. The edge costs
Table 4.3 we report the
14.13 is used with these

Bounding functions 135

3 o5
I 6
7

4

FIGURE 4.5
A graph with maximum clique {1,2,3,4}.

4.6.3 The maximum clique problem

Recall that a maximum clique in a graph G is a clique of largest cardinality. For
example, the maximal cliques in the graph in Figure 4.5 are {1,2, 3,4}, {3,4, 6},
{3,5}, and {4, 7}. Theclique {1, 2,3, 4} is the only maximum clique. In general,
a graph may have more than onc maximum clique. The problem of finding a
maximum clique in a graph G is known as the Maximum Clique problem. A
decision version of this problem was introduced in Section 1.6 as Problem 1.7.
The optimization version of the problem is defined as follows.

Problem 4.5: Maximum Clique
Instance: A graph G = (V, &)
Find: a maximum clique of G.

"This problem has been shown to be NP-complete, but in spite of its inherent
difficulty, many algorithms have been developed that perform well in practice.

In Section 4.3 we developed Algorithm 4.4 for generating all the cliques in a
graph G = (V,£). This algorithm can easily be modified to find a maximum
cligue; see Algorithm 4.14. Note that we no longer need to maintain the sets Ng;
we simply check to see if each clique constructed is larger than any previously
constructed clique.

We now turn to the development of bounding functions for this problem. First
we require a definition. Suppose G = (V, £} is a graph, and W C V. The induced
subgraph G|W] has vertex set W, and cdge set

{{u,v} € €: {u,v} S W}

Now, at a typical point in Algorithm 4.14, we have the partial solution (i.e., clique)
X = [z0,71,--.,Te—1]- Suppose X' = [zo,z),%2,...,%;] is a clique which
extends the partial solution X, where j > € — 1. Then {z¢,...,z;} mustbe a
clique in the induced subgraph G[C,]. Thus, we can obtain a bounding function

136 Bucktracking Algorithms

by placing an upper bound on the size of a maximum clique in G[C;]. If the size
of a maximum clique in G[C,] is denoted by mc(€), and mc(€) < ub(£), then

B(X) = £ + ub(¢)

is a bounding function,

Algorithm 4.14: MAXCLIQUE] (£)

global A4;, By, C, (£=0,1,...,n- 1)
if £ = OptSize
OptSize « £+ 1

then {OptCh’quc [Toy...,Te1]
ifl{=0

thenCy + V

else C; Az;_1 n Bn_1 M Cp
forcachz € C;

do {J:g -z

MAXCLIQUE] (¢ + 1)

main
OptSize « 0
MaXxCLIQUEI(D)
output (OptClique)

We can use this idea to obtain several different bounding functions, The sim-
plest of them is to observe that

mc(€) < |Cel.

This gives rise to the bounding function presented in Algorithm 4.15, which we
call the size bound.

Algorithm 4.15: S1ZEBOUND (X)

global €,
comment: X = [zq,...,%s]
return (€ + |C¢|)

Other, more sophisticated, methods of obtaining bounding functions usc the
idea of vertex coloring (see Problem 1.5). Recall that, if § = (V, &) is a graph
and k is a positive integer, then a (vertex) k-coloring of G is a function

color: V = {0,...,k - 1}

such that color(z) # color(y) forall {z,y} € £. The relevance of vertex coloring
ta the Maximum Clique problem is stated in the following simple lemma.

Bounding functions

LEMMA 44 LetGbeag:
the maximum cligue in G I

PROOF If vertices = and
the same clique.

Even though finding a ve
is not difficuit to find k-col«
One casy way to do this is
greedy algorithms were int
vertices are processed in o
gorithm 4.16 presents such
verlex sct is writtenas V =
for some paositive integer &
stored as a (global) array,
the algorithim constructs @
follows:

Colort
for0<h<k-1

Algorithm 4.16: GREED

global eolor
comment: V = {0,...,
k+20
fori—0ton -1
he0
while i < k and

do (ifi=Fk then «

ColorClass[h] ¢

color[i] + R
return ()
E———

There are several ways
bounding function. One
before the backtracking a
color and it uses k colors
restricted to the verlices i
than & colors. The numl
bound on the size of a ma»
which we call the samplin

Backtracking Algorithins

ique in G[C¢|. If the size
nc(€) < ub(£), then

ling functions. The sim-

\gorithin 4.15, which we

inding functions use the
fG = (V,£) is a graph
7 is a function

:vance of vertex coloring
ving simple lemma.

Bounding functions 137

LEMMA 44 Let G be a graph, and suppose that G has a vertex k-coloring. Then
the maximum clique in G has size at most k.

PROOF If vertices and y receive the same color, then they cannot both be in
the same clique.

Even though finding a vertex k-coloring in which k is minimized is NP-hard, it
is not difficult to find k-colorings for values of k that are larger than the minimum.
One easy way to do this is to color the vertices by a greedy strategy (recall that
greedy alporithms were introduced in Section 1.8.1}. In a greedy algorithm, the
verlices are processed in order, each vertex receiving the first available color. Al-
gorithm 4.16 presents such an algorithm. In Algorithm 4.16, we assume that the
verlex setis written as V = {0,...,n—1}. The algorithm constructs a k-coloring
for some positive integer k, and returns that value of k. The actual k-coloring is
stored as a (global) array, color. In the process of constructing this coloring,
the algorithm constructs an array of sets called CelorClass, which is defined as
follows:

ColorClass(h] = {i € V: color[i] = h}
for0<h<k-1.

Algorithm 4.16: GREEDYCOLOR (G = (V,£))

global color

comment: V = {0,...,n - 1}
k0
fori —Qton -1

h«0

while h < k and A; N ColorClass{h] # @doh + h+1
o E—k+1
do o if gk then ColorClass|h] + 0
ColorClass|h] + ColorClass[h] U {i}
colort] « h
return (k)

There are several ways in which Algorithm 4.16 can be incorporated into a
bounding function. One way is to find an initial greedy coloring of the graph
before the backiracking algorithm begins. Suppose that this coloring is denoted
color and it uses k colors. For each induced subgraph G[C,], the function color,
restricted to the vertices in Cg, defines a coloring of G[C¢] which may use fewer
than & colors. The number of colors in this induced coloring yields an upper
bound on the size of a maximum clique in GIC;]. The resulting bounding function,
which we call the sampling bound, is presented in Algorithm 4.17.

138 Backtracking Algorithms

Algorithm 4.17: SAMPLINGBOUND (X)

glabal C;, color

comment: X = [zg,...,%; 1]
return (£ + |{color[z] : £ € C¢}|)

Another way to use the greedy coloring algorithm in a bounding funclion is
to apply Algorithm 4.16 to the induced subgraph G[C,} every time we want 1o
compute the bounding function. The resulting bounding function is called the
greedy bound and it is presented in Algorithm 4.18.

Algorithm 4.18: GREEDYBOUND (X)

external GREEDYCOLOR()
global €,
comment: X = [zp,...,T¢1]

k + GREEDYCOLOR(G[C¢])
return (¢ + k)

Any of the three bounding functions discussed above (or any other bounding
function, for that maiter) can be incorporated into our backtracking algorithm as
the function B{.X'). Algorithm 4.1% is the result.

As was done in other algorithms incorporating bounding functions, we check
to see if the condition Af < OptSize is true in every iteration of the loop. This
is because the value of OptSize can increase as the algorithm progresses, and so
we check to see if we can prune every lime we are preparing to add a new node to
the clique being considered.

In Table 4.4 we list the number of nodes in the state space tree, for graphs of
various sizes, when Algorithm 4.19 is run using the different bounding functions
we have discussed. We also list the number of edges, and the size of the maximum
cliques in these graphs. The graphs we used were generated at random from the
class G(n) defined in Section 4.3.1. There are several ways to do this. One nice
method uses ranking and unranking algorithms we developed in Chapter 2. Note
that the function Randominteger{e, b) generates a random integer in the interval
(@, b]. Algorithm 4.20 constructs a random graph in the class G(n).

Bounding functions

Algorithm 4.19: MaxCL

external B()
global Ag,Bg,Ct (f =
if £ > OptSize
OptSize + €
then {OptClique [
iff=0
thenCy <V
else 0y + Az, , N B,
M « B([=zo,-..,Te-1])
foreachz € C;
if M < OptSize
then return
do
Ip T
MAXCLIQUE2(¢
main
OptSize + 0
MaXCLIQUE2(0)
output { OptClique)
 ——

Algorithm 4.20: GENER

Randominte
external < SUBSETLEX
KSUBSETLE

r ¢ Randominteger(0,:
T « SuBSETLEXUNR?
E+ D
foreachjeT

d {z,y} +- KSuBs
1 Eu{z-1.

return (G = ({0,...,n
———

The only aspect of Alg
line, where we add the cd
KSUBSETLEXUNRANK rt
subsct of {0,...,n—1}."
be included in £.

Notice that the expectec
ing was done were denot

Backtracking Algorithms

1 a bounding function is
] every time we want to
1g function is called the

: (or any other bounding
ackeracking algorithm as

ling functions, we check
eration of the loop. This
rithm progresses, and so
ring to add a new node to

space tree, for graphs of
erent bounding functions
[the size of the maximum
rated at random from the
vays to do this. One nice
loped in Chapter 2. Note
om integer in the interval
class G(n).

Bounding functions 139

Algorithm 4.19: MAXCLIQUE2 (£)

external B()
global 4, B;,C; (£=0,1,...,n—-1)
if £ > OptSize
OptSize + £
L] {OptClique + [Toy ..., Te-1]
iff=0
thenC; + V
elseCp «— Az, N B;,_, NCry
M + B([zo,...,2¢-1])
for each z € C;
if M < OptSize
then return
Iy
MAXCLIQUE2({ + 1)

do

main

OptSize + 0
MAXxCLIQUEZ(0)
output (OptClique)

Algorithm 4.20: GENERATERANDOMGRAPH (1)

Randominteger()

external { SUBSETLEXUNRANK()
KSUBSETLEXUNRANK()

T Randomlnteger(0,2(;) -1)

T « SUBSETLEXUNRANK((3),T)

E+0

foreachj €T

do {z,y} + KSUBSETLEXUNRANK(j, 2,)
E+—Efu{z-1y-1}
return (G = {({0,...,n - 1},£))

The only aspect of Algorithm 4.20 that might require explanation is the last
line, where we add the edge {z — 1, — 1} 1o £. This is because the algorithm
KSUBSETLEXUNRANK returns a 2-subset of {1,...,n}, whereas we want a 2-
subset of {0,...,n — 1}. Thus we subtract one from z and ¥ to create the edge to
be included in £.

Notice that the expected (i.c., average) sizes of state space trees when no prun-
ing was done were denoted in Section 4.3.1 by &(n), and some values of &(n)

140 Backtracking Algorithins

TABLE 44
Size of state space trees for Algorithm 4.19 on random graphs with edge density .5
number of vertices 50 100 150 200 250
number of edges 607 25335 5602 9925 15566
size of maximum clique 7 9 10 11 11
bounding function
none 8687 | 257145 | 1659016 | 7588328 | 26182672
size bound 3204 57225 350310 | 1434006 5008767
sampling bound 2268 | 44072 | 266246 | 1182514 | 4093535
greedy bound 430 5734 22599 91671 290788
TABLE 4.5
Size of state space trees for Algorithm 4.19 on random graphs with edge density .75
number of vertices 25 50 75 100 125
number of cdges 236 959 2045 3720 5780
size of maximum clique 11 14 15 17 18
bounding function
none 25570 | 2083770 | 12385596 | 186543706 | 1414266577
size bound 1840 91663 426279 5370268 35108264
sampling bound 794 37218 195567 2225982 15615755
greedy bound 91 2843 10476 70404 413421

were presented in Table 4.1. It is interesting to compare these values to the exper-
imental results obtained in Table 4.4

The edge density of a graph is the ratio of the number of its edges to (3) (which
is the total possible number of cdges). The random graphs generated by Algo-
rithm 4.20 will have edge density approximately .5. To obtain a random graph
with a given edge density 4, 0 < § < 1, Algorithm 4.21 can be used. In this algo-
rithm the function Random(e, &) generates a random real number in the interval
[@,b]. Table 4.5 presents data similar to Table 4.4, but for randomly generated
graphs with edge density approximately .75.

Algorithm 4.21: GENERATERANDOMGRAPH2 (n,)

external Random()

forz +—0ton -2
fory+z+1ton-1
r + Random(0,1)
do {ifr>1-4§
thenf «~fu{z-1,y-1}

Branch and bound

Tables 4.4 and 4.5 show
cantly as better bounding fi
for a bounding function dep
ing function, and on the an
duced. The relative compu
depend heavily on the impl
servations on the complexil
graph having n vertices, the
fore the greedy bound is cor
bound, on the other hand, ¢
rithms. Hence, there is a ir
a slower computation time.
algorithm for “large enougt
on the implementation and

4.7 Branch and bou

Another way in which we ¢
called branch and bound. '1
ine each of the choices z, €
recursively for cach choice.
termine the order in which
algorithm for a general max

We illustrate the branch :
problem. Suppose X = [z
of the Traveling Salesme
1) = (£ = 1) = n ~ £ choi
corresponding to the partial
children of X in increasing
in this order.

Backtracking Algorithms

phs with edge density .5

200 250
9925 15566
11 11

7588328 | 26182672
1434006 | 5008767
1182514 | 4093535

1671 200788

a2hs with edge density .75
100 125

Kypil} 5780

17 18

186543706 | 1414266577
5370268 35108264
2225982 15615755

70404 413421

hese values to the exper-

of its edges o (%) (which
wphs generated by Algo-
» obtain a random graph
:an be used. In this algo-
al number in the interval

for randomly generated

Branch and bound i41

Tables 4.4 and 4.5 show that the size of the state space Lree decreases signifi-
cantly as better bounding functions are employed. Of course, the optimal choice
for a bounding function depends on both the time required to compute the bound-
ing function, and on the amount by which the size of the state space tree is re-
duced. The relative computation times for the different bounding functions can
depend heavily on the implementation. However, we can make a couple of ob-
servations on the complexity of these computations. First, when given as input a
graph having n vertices, the greedy coloring algorithm takes time O(n?). There-
fore the greedy bound is computed in time O(C¢|?). The size bound and sampling
bound, on the other hand, can be computed in time O(|C¢|} using standard algo-
rithms. Hence, there is a tradeoff, because the more effective greedy bound has
a slower computation time. In general, the greedy bound wili result in a faster
algorithm for “large enough” graphs. The crossover point, however, will depend
on the implementation and is best determined by experimentation.

I

L o

4.7 Branch and bound

Another way in which we can take advantage of a bounding function is a method
called branch and bound. The usual implementation of backtracking is to exam-
inc each of the choices z; € Cy in some predetermined order, calling the algorithm
recursively for each choice. A better strategy is to usc a bounding function to de-
terimine the order in which the recursive calls are made. A branch and bound
algorithm for a general maximization problem is presented as Algorithm 4.22.

We illustrate the branch and bound technique using the Traveling Salesman
problem. Suppose X' = [z9,z),23,...,2,_ 1] is a partial solution for an instance
of the Traveling Salesman problem, and £ < n — 1. Then there are (n -
1) = (€ — 1) = n — £ choices for z,. Consider the node in the state space (ree
corresponding o the partial solution X. Algorithm 4.13 would look at the 1 — ¢
children of X" in increasing order of z,. There is no particular reason to proceed
in this order.

