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Abstract

We discuss a branch of Ramsey theory concerning edge Folkman
numbers and how computer algorithms could help to solve some

problems therein. We write G — (a1,...,ax; p)¢ if for every edge
k-coloring of an undirected simple graph G not containing K,, a
monochromatic K,, is forced in color ¢ for some i € {1,...,k}.
The edge Folkman number is defined as F.(ai,...,ax;p) =
min{|V(G)|: G — (a1,...,ar;p)¢}. Folkman showed in 1970 that
this number exists for p > max(ai,...,ax).

In general, much less is known about edge Folkman numbers than
the related and more studied vertex Folkman numbers, where we
color vertices instead of edges. F.(3,3;4) involves the smallest
parameters for which the problem is open, namely the question,
“What is the smallest order N of a K4-free graph, for which any
edge 2-coloring must contain at least one monochromatic
triangle?’ This is equivalent to finding the order N of the
smallest Ks-free graph which is not a union of two triangle-free
graphs. It is known that 16 < N (an easy bound), and it is known
through a probabilistic proof by Spencer (later updated by Hovey)
that N < 3 x 10°9. We suspect that N < 127,

This talk will present the background, overview some related
problems, discuss the difficulties in obtaining better bounds on N,
and give some computational evidence why it is very likely that
even N < 100.
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Graph notation

G - simple undirected loopless graph
V(G) - vertex set of graph G
FE(G) - edge set of graph G

R(s,t) - Ramsey number, the least n such
that in any 2-coloring of the edges of K,
there is a monochromatic K in the first color
or a monochromatic K; in the second color.

G'(n,p) - random graph
n vertices, edge probability p

x(G) - chromatic number of G

K, P, C, - complete graph, path and cycle
on n vertices



Arrowing - branch of Ramsey Theory
F.G,H - graphs, s,t,s; - positive integers

Definitions

F — (s1,...,s.)¢ iff for every k-coloring of the
edges of F', F' contains a monochromatic
copy of K, in color ¢, for some ¢, 1 <17 <k.

F — (s1,...,s.)" iff for every k-coloring of the
vertices of F', F' contains a monochromatic
copy of Ky, in color i, for some ¢, 1 <1 < k.

F — (G, H)¢ iff for every red/blue
edge-coloring of F', F' contains a blue copy of
G or a red copy of H.

Facts

R(s,t) = min{n | K, — (s,t)¢}
R(G,H) = min{n | K, — (G, H)¢}



wWarming up

G = Kg has the smallest number of vertices
among graphs which are not a union of two
K3-free graphs, since R(3,3) = 6.

Kg — (K3, K3)¢ or Kg — (3,3)

(picture proof)



wWarming up

What if we want G to be Kg-free?
Graham (1968) proved that

e G=Kg—Cs= K3+ (5 — (K3, K3)
clearly, G has no Kg

o V(H)|<8ANKg¢ H= H / (K3, K3)

(picture proof of)
K3+ Cs — (K3, K3)



Folkman problems

edge Folkman graphs
Fe(s,t; k) ={G — (s,1)¢ : K}, £ G}

edge Folkman numbers
Fe(s,t; k) = the smallest n such that there
exists an n-vertex graph G in Fe(s,t; k)

vertex Folkman graphs/numbers
2-coloring vertices instead of edges

Theorem 1. (Folkman 1970) For all
k > max(s,t), edge- and vertex- Folkman
numbers Fe(s,t; k), Fu(s,t; k) exist.



Known values/bounds for F.(3,3; k)

OQur goal Fe¢(3,3;4)

k Fe(3,3; k) graphs reference
> 7 6 Kg folklore
6 8 Cs + K3 Graham’'68
5 15 659 graphs [PRU]'99
4 < 3 X 10° probabilistic '86,'88,'89

k> R(s,t) = Fe(s,t; k) = R(s,t)

k < R(s,t), very little known in general



F.(3,3:5) = 15 and Fy(3,3:4) = 14

153 out of 659 critical graphs in F¢(3,3;5)
can be obtained from F,(3,3;4) by using:

G e Fv(3,3;4) = G+ x € Fe(3,3;5)

unique 14-vertex bicritical graph G

G — (3,3;4)"
G+ x— (3,3;5)°
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History of upper bounds on F.(3,3;4)

e 1967 - Erdsds, Hajnal state the problem

e 1970 - Folkman proves his theorem for 2
colors. VERY large bound for F.(3,3;4).

e 1975 - Erd6s offers $100 (or 300 Swiss
francs) for deciding if F.(3,3;4) < 1010

e 1986 - Frankl, Ro&dIl give a probabilistic
proof of F.(3,3:4) <7 x 101!

e 1988 - Spencer gives a probabilistic proof
of F.(3,3;4) < 3 x 108

e 1989 - Hovey finds an error in Spencer’s
proof, bound up to F.(3,3:4) < 3 x 10°

e 2005 - nothing better so far ...
e 2013 - "F.(3,3;4) < 100" is decided (7?)
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History of lower bounds on F.(3,3;4)

10 < F.(3,3:4)  Lin (1972)

16 < F.(3,3;4) since Fe(3,3;5) = 15, all
graphs in F¢(3,3;5) on 15 vertices are known,
and all of them contain K, 's.

ANY proof technique improving on 16
very likely will be of interest
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Probabilistic construction

Frankl, R&6dl, Spencer, Hovey
used graph G™ constructed as follows:

Construction

input an integer n, and probability p

G «— G(n,p)

remove random edge from each K4 in G
output G*, the result of step 3

W

Sometimes GG* — (3,3)°

Frankl, Ro&dlI:
very difficult probabilistic graph theory
n=7x 101!

Spencer/Hovey:
difficult probabilistic graph theory
n=3x10% p=6n"1221/9129
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Probabilistic construction

main proof steps

Let
U(G) ={(z,zyz) | Axyz in G}

U* = U(G")

For each z € V(G), define (maximum over all
partitions N(z) =T UB, TN B =10)

A(x) = max|{yz € E(G) | y€ T ANz € B}

Theorem 2. (Spencer)

> A@) < 2JU”
eV (QG)

holds with positive probability for n = 3 x 109,
p ~ 0.00011, and |E(Q)| ~ 4 x 1014,
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Probabilistic construction

main counting trick

Theorem 3.
If
2
Z A(z) < §|U*|
eV (QG)

then

G* € Fe(3,3;4).
Proof.

G has no K4 by construction.
Suppose f colors E(G*) in A-free way.

Count marked triangles (x,xyz) such that
f(xz) # f(xzy). It is 2|U*|/3, but also bounded
by ¥,ev(a) A(x). Contradiction. ]

15



General facts on F.(s,t; k)

o G & Fe(s,t; k) = x(G) > R(s,t)
no k in the bound!, easy

o Fe(s,t; > R(s,t)) = R(s,t)
o Fe(s,t; R(s,t)) = R(s,t) +c¢

in most cases c is small (2, 4, 5)
o Fe(s,t;< R(s,t)) > R(s,t) + 4

e Ge Fy(R(s—1,t),R(s,t—1);k—1) =
G+ x € Fe(s,t; k), or equivalently

o G+x /A (51 =
G 7L) (R(S T 17t)7R(87t T 1))U;
and clearly cl(G+x) =c(G) + 1
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Special cases (other than F.(3,3;4))

Fe(3,4;> 10) =9, Kg since R(3,4) =9
Fe(3, 4 9) = 14, K4 + (5 + Cs, Nenov (1991)

14 < F.(3,4;8) < 314,
t uczak, Rucinski, Urbanski (2002)

F.(3,5:14) = 16
F.(4,4;18) = 20
F.(3,7;22) > 27
F.(3,3,3:17) = 19
F.(3,3,3;16) = 21

forbidden K, in the above items has
k= R(s,t) or k= R(s,t) — 1

several critical graphs have the form
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Vertex Folkman numbers pearls

Fy(2,2,2;3) =11
the smallest 4-chromatic triangle-free graph

Mycielski (1955) [mathworld.wolfram.com]

Fy(2,2,2,2:4) =11
the smallest 5-chromatic K4-free graph has
11 vertices, Nenov (1984)

Fy(2,2,2,2:3) = 22
the smallest 5-chromatic triangle-free graph
has 22 vertices, Jensen/Royle (1995)
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Vertex Folkman numbers pearls

Theorem 4. (ancient folklore)
Fy(2,---,2;r)=r+5forr>5
N——

Tr

Sketch of the proof
for the upper bound consider as
the critical graph K,_g5+4 Cg5 4+ Cx

for the lower bound take any
K,—free graph G on r 4+ 4 vertices, then
assemble matchings in G to show x(G) <r |

Theorem 5. (Nenov 2002)
Fy(3,---,3;2r) =2r+ 7, for r > 3.
N——

r

For r = 2, a small but hard case,
Fy(3,3;4) = 14 (PRU 1999)

Fy(2,2,3;4) = 14 (Coles MS-CS 2005)
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Complexity of arrowing

e Testing whether F — (3,3)¢ is
coNP-complete (Burr 1976).

e Determining if R(G,H) < m is
NP-hard (Burr 1984).

e For any fixed 3-connected graphs G and
H, testing whether F' 4 (G, H)¢ is
NP-complete (Burr 1990).

e For any fixed G on at least 3 vertices,
testing whether F' — (G,G)"Y is
coNP-complete (Achlioptas 1997).

e Testing whether FF — (G, H)¢ is
I15-complete (Schaefer 2001).

Testing whether F — (Ko, Kp)€ is the same as
checking K, C F', so it is NP-hard.
20



Complexity of (edge) arrowing

Compendium of arrowing complexity
including contributions by Cook (1971),
Burr (1976, 1984, 1990), Rutenburg (1986)
and Schaefer (2001)

Problem

F— (G, H)

F— (G,H)
F_>(K27H)

F — (K, H)
F— (G, H)

F — (Pa, Py)

F — (kEK>, H)
Fﬁ(Kl,naKl,m)

Fixed

G, H

H
T, e(T) > 2
G,Helj

k, H

Complexity

M35-complete

in CONP
NP-complete
NP-complete
NnE-complete
coNP-complete
coNP-complete
P

F)

NP-hard

[from recent ECS/NSF grant application]
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Tools in complexity of arrowing

(G, H)-enforcers, -signal senders, -cleavers,
-determiners are the tools (gadgets) used in
reductions (Burr, Schaefer).

Such gadgets permit to construct F' for which
we are in control of whether F — (G, H).

Definition (Grossman 1983)
F is a (G, G)-cleaver iff there exists unique
coloring of I witnessing F' 4 (G, G).

22



Cleavers

P, cleaved graph F, F /4 (Pga, Py),
but there is only one witness coloring.

graph F

Known K3-cleaved graphs contain Kj.
Ks is not Cs-cleaved, P53 cleaves (.
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G107 — (3,3)¢ 7

Exoo suggested to look at a well known
(4,4,4)- and (4,12)-Ramsey graph (Hill,
Irving 1968), defined by:

G127 = (2127, F)
E={(z,y)|lr —y= as (mod 127)}

e 127 vertices, 2667 edges, 9779 triangles
e regular of degree 42

e independence number 11, no K4's !

e vertex- and edge-transitive

e 5334 (= 127 x42) automorphisms

o (127,42,11,{14,16}) - regularity,
almost strongly regular graph

e K1o7 can be partitioned into three G157's
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When to expect G — (3,3)¢ 7

G has a large number of triangles
G has many small dense subgraphs

Unfortunately, A(x) used in the proof by
Spencer is very far from being useful for G157

Conjecture: G127 — (3,3)°

If G1o7 — (3,3)¢ then it gives 23,622,047-fold
improvement over Spencer/Hovey bound.
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Proving G — (3,3)¢

First, solve a simpler task: find a small
subgraph H, embedded in G in many places,
such that there is a small number of colorings
witnessing H 4 (3, 3)¢

Second, try to extend all (not many)
colorings for H /4 (3,3)¢ to whole G,

or, if this is too expensive ...

go via SAT ...

26



Reducing {G | G 4 (3,3)¢} to 3-SAT

edges in G —— variables of ¢
each (edge)-triangle xyz in G — add to ¢g

(z+y+2)AN(ZT+7+72)
Clearly,

G 4 (3,3)° <= ¢ is satisfiable

For G = G127, ¢ has 2667 variables and
19558 3-clauses, 2 for each of the 9779
triangles.

Note: By taking only the positive clauses, we
obtain a reduction to ¢, in NAE-3-SAT with
half of the clauses.
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Algorithms for 3-SAT

Randomized algorithms finding a satisfying
assignment to n-variable 3-SAT in expected
time

O(c")

Between 1997 and 2004, ¢ was sliding down
from 1.782 to 1.324 (Iwama, Tamaki - 2004)
in @ dozen of papers.

8-authors TCS 2002 paper presenting a
deterministic algorithm for k-SAT running in

time
2 n
R

28



DIMACS format

¢G4, 1IN standard DIMACS format:

p cnf 2667 19558
1243 0

-1 -2 -43 0
16440

-1 -6 -44 0

<19550 lines deleted>

2656 2657 2664 O
-2656 -2657 -2664 O
2659 2660 2666 O
-2659 -2660 -2666 O
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SAT-solvers - enhanced/tuned
Davis-Putnam Algorithm

zChaff

Well known solver since 2001, winner of
competitions. EE Princeton group: Fu,
Mahajan, Zhao, Zhang, Malik, joined by
Madigan (MIT), Moskewicz (UC Berkeley).

BerkMin561
New contender since 2003, strong

“industrial” performance, Goldberg (Cadence
Berkeley), Novikov (BAS Minsk)

Satzoo

New contender since 2003, strong for
combinatorial/handmade instances, Eén and
Sorensen (Chalmers U., Sweden)
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SAT-solvers

SAT 2004 Competition
awards in nine categories

(random, crafted, industrial)
x (SAT, UNSAT, ALL)

March-eq - winner of 2004 competition
in the category (crafted, UNSAT)
Heule and van Maaren, Delft Un. of Tech.

Adaptnovelty, Kcnfs, Jerusat 1.3
other recent less known SAT-solvers

GRASP’'99, SATQO'97, POSIT '95
other older more known SAT-solvers
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zChaff experiments on ¢¢, -

e Pick H = G157[S] on m = |S| vertices.
Use zChaff to split H:

o m < 80, H easily splittable
e m ~ 83, phase transition 7

e m > 86, splitting H is very difficult

e (G1>7 has many small dense subgraphs,
but no K3-cleaved graphs among them.

o #(clauses)/# (variables) = 7.483 for G127,
far above conjectured phase transition
ratio r = 4.2 for 3-SAT. It is known that

3.52 < r <4596
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SAT solvers

ZCHAFF

M. Moskewicz and C. Madigan and Y. Zhao and L. Zhang and S.

Malik, Chaff: Engineering an Efficient SAT Solver, Proceedings of
the 39th Design Automation Conference, Las Vegas, June, 2001.

Available at http://www.princeton.edu/~ chaff (2004).

MARCH_EQ
Marijn Heule and Hans van Maaren, March_eq SAT-solver, 2004.
Available at http://www.isa.ewi.tudelft.nl/sat/march _eq.htm.

Links to other SAT-solvers can be easily found on the web.
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Revisions

Revision #1, October 28, 2004
presented at MCCCC'04, Rochester NY

Revision #2, February 7, 2005
presented at the University of Rochester, Rochester NY

Revision #3, June 7, 2013
presenting solution to the Gi1»7 problem, Playa Azul, Cozumel QR
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