Bagging and Boosting

Paul Romanczyk & Wenbo Wang
par4249@rit.edu wxw4213@rit.edu

Oct. 14, 2010
Outline

Introduction

Bagging and Boosting: the Basic Idea

Bagging

Algorithm Review
Theoretical Analysis
Variants of Bagging

Boosting

Overview
Boosting Examples
Example

References

Questions
Bagging and Boosting: the Basic Idea

- **Bagging**
 - Sample (uniformly) with replacement from the original training set
 - Use unstable base classifier to develop the classifier ensemble iteratively
 - Final decision is based on voting

- **Boosting**
 - Evolve the probability distribution of classifier ensemble to minimize the loss
 - The classifier in the ensemble is built on a training set sampled from the entire training set with updated distribution
 - Expend the classifier ensemble incrementally
Algorithm Review [Kuncheva, 2004]

- **Training Phase**
 1. Initialize the parameters
 - $D = \emptyset$, the ensemble
 - L, the number of classifiers to train
 2. For $k = 1, \ldots, L$
 - Take a bootstrap sample S_k from Z
 - Build a classifier D_k using S_k as the training set
 - Add the classifier to the current ensemble, $D = D \cup D_k$
 3. Return D

- **Classification Phase**
 4. Run D_1, \ldots, D_L on the input $mathbfx$
 5. The class with the maximum number of votes is chosen as the label for $mathbfx$
The bootstrap sampling with replacement is drawn from the training set Z with the same uniform distribution.

Bagging is a linear combination of classifiers derived from a single base classifier:

- Majority voting (hard-labeling in the case of binary classification)
- Soft-combination with weighted output (soft-labeling in the case of binary classification)
Bootstrap replicates

- Ideal (Independent) Sampling:
 - Build the sub-training set with random sample of the true sample distribution
 - Develop independent classifier
- Idea Bagging [Fumera et al., 2008]
 - Classifier output is the expectation of random bootstrap replicate of Z
- Real Bagging
 - A finite approximation of idea bagging
Classifier Correlation [Kuncheva, 2004]
Empirical Analysis of Classifier Correlation (on Check-Board Data)

- Training set size: 10000, resampling size: 100, testing set size: 1000
- Training set size: 1000, resampling size: 100, testing set size: 1000
- Training set size: 200, resampling size: 100, testing set size: 1000
Empirical Analysis of Classifier Correlation (Cont’)

- When we keep increasing the size of 200 training-set ensemble:

![Graph showing training set size, resampling size, and testing set size. The graph compares Bagging and Independent Sampling with respect to ensemble size and testing error. Training set size: 200, resampling size: 100, testing set size: 1000.]{fig}
Interpretation by Bias-Variance Decomposition [Fumera et al., 2008]

- Average error: \(E = E_{\text{bayes}}^2 + E_{\text{bias}}^2 + V \)
- Bagging reduce the variance by increasing the ensemble size
 - \(E_{\text{add}} = E_{\text{bias}}^2 + V = E_T \{ E^2(x; t_B) + \frac{1}{m} V(x; t_B) \} \)
Random Forest

- Training: build a collection of tree-classifiers, each tree grown with a random vector $\Theta_k, k = 1, \ldots, L$.
- Decision: Major vote
- Random vector (i.i.d.) Θ_k include:
 - Randomly sample the feature set
 - Randomly sample the training set
 - Randomly varying some parameters
Pasting Small Votes

- Aiming at massive data set
- Training: classifiers are trained on random small sub-set of the training set (called bite)
 - RVote: sampling follows the same distribution
 - IVote.a: new sampling is based on test error of the old ensemble (out-of-bag estimate)
 - IVote.b: use separate validation set
- Decision: Major vote
- Random vector (i.i.d.) Θ_k include:
 - Randomly sample the feature set
 - Randomly sample the training set
 - Randomly varying some parameters
Boosting

- Run multiple classifiers
- Weight the classifiers by how well they perform.
- Unstable classifiers are ideally suited to boosting algorithms that subsample the training data.
Boosting

Outline
Introduction
Bagging and Boosting: the Basic Idea
Bagging
Algorithm Review
Theoretical Analysis
Variants of Bagging
Boosting
Overview
Boosting Examples
Example
References
Questions
HEDGE(β)

Given:

- \(D = \{D_1, \ldots, D_L\} \)
- \(Z = \{z_1, \ldots, z_N\} \)

1. Initialize the parameters
 - Pick \(\beta \in [0, 1] \)
 - Set weights \(\mathbf{w}^1 = [w_1, \ldots, w_L], w_i^1 \in [0, 1], \sum_{i=1}^{N} w_i^1 = 1 \) (Usually \(w_i^1 = \frac{1}{L} \))
 - Set cumulative loss \(\Lambda = 0 \)
 - Set individual loss \(\lambda_i = 0, i = 1, \ldots, L \)
HEDGE(β)

2. For all \(z_j, j = 1, \ldots, N \)
 - Calculate the distribution by
 \[
 p_i^j = \frac{w_i^j}{\sum_{k=1}^{L} w_k^j}, \quad i = 1, \ldots, L
 \]
 - Find the individual losses: \(l_i^j = 1 \) if \(D_i \) produces a misclassification of \(z_j \) and \(l_i^j = 0 \) otherwise, \(i = 1, \ldots, L \)
 - Update the cumulative loss
 \[
 \Lambda \leftarrow \Lambda + \sum_{i=1}^{L} p_i^j l_i^j
 \]
 - Update the individual losses
 \[
 \lambda_i \leftarrow \lambda_i + l_i^j
 \]
 - Update the weights
 \[
 w_i^{j+1} = w_i^j \beta_i^j
 \]
3. Calculate and return Λ, λ_i, and p_i^{N+1}, $i = 1, \ldots, L$.

$HEDGE(\beta)$
AdaBoost

Adaptive Boosting

Training

1. Initialize the parameters
 - Set weights
 \[\mathbf{w}^1 = [w_1, \ldots, w_N], \ w_j^1 \in [0, 1], \sum_{j=1}^{N} w_j^1 = 1 \]
 - Initialize the ensemble \(\mathcal{D} = \emptyset \)
 - Pick the number of classifiers to train, \(L \)
AdaBoost

2. For $k = 1, \ldots, L$
 - Take a sample S_k from Z using distribution w^k
 - Build a classifier D_k using S_k as a training set
 - Calculate the weighted ensemble error at step k by
 $$\epsilon_k = \sum_{j=1}^{N} w_j^k l_j^k$$
 where $l_j^k = 1$ if D_k produces a misclassification of z_j and $l_j^k = 0$ otherwise.
 - If $\epsilon_k = 0$ or $\epsilon_k \geq 0.5$, ignore D_k, reinitialize the weights w_j^k to $1/N$ and continue.
 - Else calculate $\beta_k = \frac{\epsilon_k}{1-\epsilon_k}$, $\epsilon_k \in (0, 0.5)$
 - Update the individual weights
 $$w_j^{k+1} = \frac{w_j^k \beta^{(1-l_j^k)}}{\sum_{i=1}^{N} w_i^k \beta^{(1-l_i^k)}},$$
 $j = 1, \ldots, N$
 - Return D and β_1, \ldots, β_L
AdaBoost

Classification

3. Calculate the support for class ω_t by

$$\mu_t(x) = \sum_{D_k(x)=\omega_t} \ln \left(\frac{1}{\beta_k} \right)$$

4. The class with the maximum support is chosen as the label for x
Matlab Example

Requires PRtools and Neural Net Toolbox

% Generate some data
data = gendatb(400, 2);
[Test, Train] = gendat(data, 0.5);

% Train the classifiers
w_nn = bpxnc(Train);
w_boost = adaboostc(Train, bpxnc, 4);

% Classify both data subsets with both trained classifiers
nn_train_class = Train * w_nn;
boost_train_class = Train * w_boost;
nn_test_class = Test * w_nn;
boost_test_class = Test * w_boost;
Matlab Example

Training set (black line is BPNN, maroon line is boosting)
Banana Set

Testing set (black line is BPNN, maroon line is boosting)
Matlab Example

- **Neural Net**
 - Training Error: 0.071147
 - | True Labels | Estimated Labels | Totals |
 - | 1 | 2 |
 - | 1 | 98 | 5 | 103 |
 - | 2 | 9 | 87 | 96 |
 - Totals | 107 | 92 | 199 |

- **Boosting**
 - Training Error: 0.05623
 - | True Labels | Estimated Labels | Totals |
 - | 1 | 2 |
 - | 1 | 100 | 3 | 103 |
 - | 2 | 8 | 88 | 96 |
 - Totals | 108 | 91 | 199 |
Matlab Example

- **Neural Net**
 - Testing Error: 0.09551

<table>
<thead>
<tr>
<th>True Labels</th>
<th>Estimated Labels</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>85</td>
</tr>
<tr>
<td>Totals</td>
<td>109</td>
<td>92</td>
</tr>
</tbody>
</table>

- **Boosting**
 - Training Error: 0.14567

<table>
<thead>
<tr>
<th>True Labels</th>
<th>Estimated Labels</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>79</td>
</tr>
<tr>
<td>Totals</td>
<td>111</td>
<td>90</td>
</tr>
</tbody>
</table>
References

Questions