Selection Regions

Assume we have a set of classifiers

 $D = \{D_{1}, D_{2}, ..., D_{L}\}$

Let \mathbf{R}^n be divided into K selection regions (also called regions of competence) called $\{R_1, R_2, ..., R_k\}$

Let E map each input **x** to its corresponding Region R_j

 $E : \mathbf{x} \rightarrow R_{j}$, where R_{j} is the region for which $D_{i(j)}$ is applied

Feed **x** into $D_{i(j)}$ iff $E(\mathbf{x}) = R_j$

Note: Combination for this definition is trivial (it forwards the one classification that it receives),

but may be used in extensions that require fusion.

Competence Estimation

Decision-independent vs. decision-dependent: whether or not label chosen by classifiers are known

Direct k-nn:

Decision independent: calculate accuracy of classifiers on k nearest neighbors of input **x.**

Decision dependent: determine k nearest neighbors of \mathbf{x} given the same label as \mathbf{x} . Competence is the accuracy of the classifier in these nearest neighbors.

<u>Distance-based k-nn</u>: uses confidence measure output by the classifier Decision independent: weighted average of classifier outputs for each correct label in the set of neighbors

 $C(D_i | \mathbf{x}) = \frac{\sum_{\mathbf{z}_j \in N_\mathbf{x}} P_i(l(\mathbf{z}_j) | \mathbf{z}_j) (1/d(\mathbf{x}, \mathbf{z}_j))}{\sum_{\mathbf{z}_j \in N_\mathbf{x}} (1/d(\mathbf{x}, \mathbf{z}_j))}$

Decision dependent: weighted average of classifier outputs for neighbors whose true class label is the same as that chosen for the input

$$C(D_i|\mathbf{x}) = \frac{\sum_{\mathbf{z}_j} P_i(s_i|\mathbf{z}_j) 1/d(\mathbf{x}, \mathbf{z}_j)}{\sum_{\mathbf{z}_j} 1/d(\mathbf{x}, \mathbf{z}_j)}$$

Potential functions:

Points contribute positively to a classifier's potential if correctly recognized and negatively otherwise. This potential field is weighted by the distance from the point to the input element.

$$C(D_i|\mathbf{x}) = \sum_{\mathbf{z}_j \in \mathbf{Z}} \phi(\mathbf{x}, \mathbf{z}_j) \quad \phi(\mathbf{x}, \mathbf{z}_j) = \frac{g_{ij}}{1 + \alpha_{ij} (d(\mathbf{x}, \mathbf{z}_j))^2}$$

Pre-estimation of Competence Regions

K = number of regions of competence L = number of classifiers

Decide a classifier from D = {D₁, ... D_L} for each region R_j, j = 1,...K. For input **x**, find its region of competence and choose most compete classifier for that region (D_{i(j)})

Selection or Fusion?

Run paired t-test to determine statistical significance of classifier $D_{i(j)}$. If difference in accuracies between best classifier and all other classifiers is significant, use classifier selection.

Otherwise, use fusion.

= 0.05)

 P_D = Accuracy of classifier D_i in region R_j t = Statistic with parameters α (level of significance), degrees of freedom (d.o.f.) N = Sample size

$$\begin{bmatrix} \hat{P}_D - t_{(0.05, N-1)} \sqrt{\frac{\hat{P}_D(1 - \hat{P}_D)}{N}}, \hat{P}_D + t_{(0.05, N-1)} \sqrt{\frac{\hat{P}_D(1 - \hat{P}_D)}{N}} \end{bmatrix} = 95\% \text{ (1-.05) Confidence Interval,}$$

$$\Delta = \frac{7.6832 P_1 - 3.8416 + 3.92 \sqrt{NP_1(1 - P_1)}}{N + 3.8416} = \text{threshold for statistical significance (for N>=30, \alpha)}$$