
Support Vector Machines

About the Name...
A Support Vector

A training sample used to define classification
boundaries in SVMs

• located near class boundaries

Support Vector Machines

Binary classifiers whose decision boundaries are
defined by support vectors

2

SVMs: Design Principles
Discriminative

Similar to perceptrons, SVMs define linear decision
boundaries for two classes directly

• vs. Generative approaches, where decision boundaries defined by
estimated posterior probabilities (e.g. LDC, QDC, k-NN)

• Perceptron: decision boundary sensitive to initial weights, choice of
η (learning rate), order in which training samples are processed

Maximizing the Margin

Unlike perceptrons, SVMs produce a unique boundary
between linearly separable classes: the one that maximizes
the margin (distance to the decision boundary) for each class

• Often leads to better generalization 3

y1

y2

R2

optimal hyperplane
m

ax
im

um
m

ar
gi

n
b

m
ax

im
um

m
ar

gi
n

b

R1

FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

More on ‘The Margin’

The Margin, b

Is the minimum distance of any sample to the
decision boundary.

Training SVMs

= maximizing the margin, moving the decision
boundary as far away from all training samples as
possible.

5

Maximizing the Margin

• At left: a sub-optimal margin

• At right: optimal margin

• y values: for linear function defined by the SVM. For linearly
separable data, all training instances correctly classified as -1 or
1 (locations in the margins have y values in (-1,1))

6

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

*Bishop, “Pattern Recognition and Machine Learning,” p. 327

Binary Classification by SVM
SVMs Define Linear Decision Boundaries

Recall: so do perceptrons, LDCs for two classes, etc.

Classify By the Sign (+/-) of:

where Ns is the number of support vectors, yi the class of
support vector xi (+1 or -1), and is a weight (Lagrange
multiplier) associated with xi.

7

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

Ns: # support
vectors xi (with

> 0)

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

*Here, yi refers to class (-1
or 1) for instance xi

Training/Learning for SVMs
Optimization Problem:

Note:

Given a training set, two parameters of g(x)
need to be learned/defined: and

Once have been obtained, the optimal
hyperplane and may be found

8

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





subject to
N∑

i=1
λiyi = 0

∀xi, λi ≥ 0

1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

1

Non-Linearly Separable Classes

May be handled by using a soft margin, in which points may lie,
and classification errors may occur (e.g. margin properties
defined by tunable parameters for v-SVM).

Often handled by transforming a non-linearly separable feature
space into a higher-dimensional one in which classes are
linearly separable (the “kernel trick”), and then use a ‘plain’
SVM for classification.

9

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

Example: Restructuring Feature Space
 (from Russell & Norvig, 2nd Edition)

10

Here, mapping is defined by:
f1 = x12 f2 = x22 f3=sqrt(2)x1x2

The “Kernel Trick”

• The expression for optimization above does
not depend on the dimensions of the feature
vectors, only their inner (‘dot’) product.

• We can substitute a kernelized version of the
inner product (k) for the inner product of
feature vectors, where k uses a non-linear
feature mapping phi:

• After training, we classify according to:

11

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





1

g(x) = wTx + w0

=
Ns∑

i=1
λi yi xT

i x + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





subject to
N∑

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

1

g(x) = wTx + w0

g(x) =
Ns∑

i=1
λi yi k(xi, x) + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





subject to
N∑

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

1

Some Common Kernel Functions

Polynomial (d is degree of polynomial)

Gaussian

12

g(x) = wTx + w0

g(x) =
Ns∑

i=1
λi yi k(xi, x) + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





subject to
N∑

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

k(x, x′) = exp(−||x− x′||2/2σ2)

1

g(x) = wTx + w0

g(x) =
Ns∑

i=1
λi yi k(xi, x) + w0

max
λ




N∑

i=1
λi −

1

2

∑

i,j
λiλjyiyjx

T
i xj





subject to
N∑

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

k(x, x′) = exp(−||x− x′||2/2σ2)

k(x, x′) = (xTx′)d

1

Handling Multiple Classes
One vs. All

Create one binary classifier per class

• Most widely used: C (# class) SVMs needed

One vs. One

Create one binary classifier for every pair of classes: choose
class with highest number of ‘votes’

• Variation: use error-correcting output codes (bit strings
representing class outcomes), use hamming distance to closest
training instances to choose class

• Expensive! (C(C-1)/2 SVMs needed)

DAGSVM

Organize pair-wise classifiers into a DAG, reduce
comparisons 13

Ambiguous Regions for Combinations of Binary Classifiers

14

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

‘one vs. all’ ‘one vs. one’

*Taken from Bishop, “Pattern Recognition and Machine Learning”, p. 183

