
Support Vector Machines



About the Name...
A Support Vector

A training sample used to define classification 
boundaries in SVMs 

• located near class boundaries 

Support Vector Machines

Binary classifiers whose decision boundaries are 
defined by support vectors
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SVMs: Design Principles
Discriminative

Similar to perceptrons, SVMs define linear decision 
boundaries for two classes directly

• vs. Generative approaches, where decision boundaries defined by 
estimated posterior probabilities (e.g. LDC, QDC, k-NN)

• Perceptron: decision boundary sensitive to initial weights, choice of 
η (learning rate), order in which training samples are processed

Maximizing the Margin

Unlike perceptrons, SVMs produce a unique boundary 
between linearly separable classes: the one that maximizes 
the margin (distance to the decision boundary) for each class

• Often leads to better generalization 3
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FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.



More on ‘The Margin’

The Margin, b

Is the minimum distance of any sample to the 
decision boundary.

Training SVMs

= maximizing the margin, moving the decision 
boundary as far away from all training samples as 
possible.
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Maximizing the Margin

• At left: a sub-optimal margin

• At right: optimal margin

• y values: for linear function defined by the SVM.  For linearly 
separable data, all training instances correctly classified as -1 or 
1 (locations in the margins have y values in (-1,1))
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*Bishop, “Pattern Recognition and Machine Learning,” p. 327



Binary Classification by SVM
SVMs Define Linear Decision Boundaries

Recall: so do perceptrons, LDCs for two classes, etc. 

Classify By the Sign (+/-) of:

where Ns is the number of support vectors, yi the class of 
support vector xi (+1 or -1), and      is a weight (Lagrange 
multiplier) associated with xi. 
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*Here, yi refers to class (-1 
or 1) for instance xi



Training/Learning for SVMs
Optimization Problem:

Note:

Given a training set, two parameters of g(x) 
need to be learned/defined:      and 

Once       have been obtained, the optimal 
hyperplane and       may be found 
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Non-Linearly Separable Classes

May be handled by using a soft margin, in which points may lie, 
and classification errors may occur (e.g. margin properties 
defined by tunable parameters for v-SVM).

Often handled by transforming a non-linearly separable feature 
space into a higher-dimensional one in which classes are 
linearly separable (the “kernel trick”),  and then use a ‘plain’ 
SVM for classification.
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Example: Restructuring Feature Space
 (from Russell & Norvig, 2nd Edition)
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Here, mapping is defined by:
f1 = x12     f2 = x22   f3=sqrt(2)x1x2



The “Kernel Trick”

• The expression for optimization above does 
not depend on the dimensions of the feature 
vectors, only their inner (‘dot’) product.

• We can substitute a kernelized version of the 
inner product (k) for the inner product of 
feature vectors, where k uses a non-linear 
feature mapping phi:

• After training, we classify according to:
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Some Common Kernel Functions

Polynomial (d is degree of polynomial)

Gaussian
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Handling Multiple Classes
One vs. All

Create one binary classifier per class

• Most widely used: C (# class) SVMs needed

One vs. One

Create one binary classifier for every pair of classes: choose 
class with highest number of ‘votes’

• Variation: use error-correcting output codes (bit strings 
representing class outcomes), use hamming distance to closest 
training instances to choose class 

• Expensive! ( C(C-1)/2 SVMs needed)

DAGSVM

Organize pair-wise classifiers into a DAG, reduce 
comparisons 13



Ambiguous Regions for Combinations of Binary Classifiers 
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*Taken from Bishop, “Pattern Recognition and Machine Learning”, p. 183


