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HMMs
Model likelihood of a sequence of observations as a 
series of state transitions. 

• Set of states set in advance; likelihood of 
state transitions, observed features from 
each state learned

• Each state has an associated feature space

• Often used to find most likely sequence of 
state transitions, according to the model

• Example: recognizing spoken words  
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FIGURE 3.11. A left-to-right HMM commonly used in speech recognition. For instance,
such a model could describe the utterance “viterbi,” where ω1 represents the phoneme
/v/, ω2 represents /i/,. . . , and ω0 a final silent state. Such a left-to-right model is more
restrictive than the general HMM in Fig. 3.9 because it precludes transitions “back” in
time. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.



HMMs: On-line Handwriting Recognition

Symbols

Represented as a sequence of (x,y) locations for each pen 
stroke

A Simple HMM

16 states representing a line segment of fixed length in 
one of 16 angles: another ‘left-to-right’ model with a fixed 
sequence of states
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**Examples generated 
from the HMM

(example from Bishop, 
“Pattern Recognition 

and Machine Learning”)



First-Order Markov Models

Represent Probabilistic State Transitions

“First Order:” probability of a state for each 
time step depends only on the previous state:

Transition probabilities coming out of each 
state sum to one. States at times t and t+1 may 
be the same.
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P (ωi(t + 1)|ω(t)) = aij

|Ω|∑

j=1

aij = 1

1

P (ωj(t + 1)|ωi(t)) = aij

|Ω|∑

j=1

aij = 1
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FIGURE 3.8. The discrete states, ωi , in a basic Markov model are represented by nodes,
and the transition probabilities, aij , are represented by links. In a first-order discrete-time
Markov model, at any step t the full system is in a particular state ω(t). The state at step
t + 1 is a random function that depends solely on the state at step t and the transi-
tion probabilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Example: First-Order M. Model

Consider State Sequence w6

Probability of this Sequence

Given transition probability table θ, first state known: product of 
transition probabilities, aij

Problem

In practice, we often can’t directly observe the states of interest (e.g. 
speech recognition: wave features, not phonemes as input)
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P (ωj(t + 1)|ωi(t)) = aij

|Ω|∑

j=1

aij = 1

ω6 = {ω1, ω3, ω2, ω2, ω1, ω3}
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P (ωj(t + 1)|ωi(t)) = aij

|Ω|∑

j=1

aij = 1

ω6 = {ω1, ω3, ω2, ω2, ω1, ω3}

P (ω6|θ) = a13a32a22a21a13
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First-Order HMMs
Modification

As we can’t directly observe states, let’s model the likelihood of 
observed features for each state

• Add ‘visible’ states V for observed features

• States of interest are ‘hidden’ (must be inferred)

Restriction

We will discuss HMMs where the observations are discrete

Observations

Are now sequences of visible states

Probability of transition to visible state depends on current (hidden 
state); transitions to visible states from each hidden state must sum to 
one
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V6 = {v5, v1, v1, v5, v2, v3}

bjk = P (vk(t)|ωj(t))

∑

k

bjk = 1

2

V6 = {v5, v1, v1, v5, v2, v3}

bjk = P (vk(t)|ωj(t))

∑

k

bjk = 1
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FIGURE 3.9. Three hidden units in an HMM and the transitions between them are
shown in black while the visible states and the emission probabilities of visible states
are shown in red. This model shows all transitions as being possible; in other HMMs,
some such candidate transitions are not allowed. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

Example: HMM

Consider Visible State Sequence V6

Sequence of Hidden States

Is non-unique, even if we know that we begin in 
state one. However, some may be more likely 
than others.
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V6 = {v4, v1, v1, v4, v2, v3}

bjk = P (vk(t)|ωj(t))

∑

k

bjk = 1
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Key Problems

Evaluation

Computing the probability that a sequence of visible states was 
generated by an HMM

Decoding

Determine the most likely sequence of hidden states that 
produced a sequence of visible states 

Learning

Given the HMM structure (number of visible and hidden 
states) and a training set of visible state sequences, determine 
the transition probabilities for hidden and visible states.
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Evaluation
Probability of Visible Sequence VT:

Is the sum of probabilities for the sequence 
over all possible length T paths through the 
hidden states:

where rmax = cT for c hidden states. State T is 
a final or absorbing state (e.g. silence in 
speech applications), ω0
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P (VT ) =
rmax∑

r=1

P (VT |ωr
T )P (ωr

T )
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Evaluation, Cont’d
Probability of Visible Sequence (alt.)

Interpretation

Sum over all possible hidden state sequences 
of: conditional probability of each transition 
multiplied by probability of visible symbol being 
emitted from current hidden state

Problem

Computation is O(cT T) e.g. c =10, T = 20: ~1021
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P (VT ) =
rmax∑

r=1

P (VT |ωr
T )P (ωr

T )

P (ωT
r ) =

T∏

t=1

P (ω(t)|ω(t− 1))

P (VT |ωT
r ) =

T∏

t=1

P (v(t)|ω(t))

P (VT ) =
rmax∑

r=1

T∏

t=1

P (v(t)|ω(t))P (ω(t)|ω(t− 1))

3



Forward Algorithm

(Much) Faster Evaluation

In O(c2 T) time

Idea

Compute the probability recursively for each 
state at each time step from 1...T:

Return α0(T) (probability of final state ω0  at 
last time step) 11

αj(t) =






0, if t = 0 and j != initial state
1, if t = 0 and j = initial state
[
∑

i αi(t− 1)aij]bjkv(t) otherwise

4

(prob. of visible symbol vk)



ω1

ω2

ω3

ωc

ω1

ω2

ω3

ωc

ω1

ω3

ωc

ω1

ω2

ω3

ωc

ω1

ω2

ω3

ωc

t = 1 2 3 T-1 T

α1(2)

α2(2)

α3(2)

αc(2)

vk

a12

a12

a32

ac2

b2k

ω2

FIGURE 3.10. The computation of probabilities by the Forward algorithm can be visu-
alized by means of a trellis—a sort of “unfolding” of the HMM through time. Suppose
we seek the probability that the HMM was in state ω2 at t = 3 and generated the ob-
served visible symbol up through that step (including the observed visible symbol vk ).
The probability the HMM was in state ωj(t = 2) and generated the observed sequence
through t = 2 is αj(2) for j = 1, 2, . . . , c. To find α2(3) we must sum these and multiply
the probability that state ω2 emitted the observed symbol vk . Formally, for this particular
illustration we have α2(3) = b2k

∑c
j=1 αj(2)aj2. From: Richard O. Duda, Peter E. Hart,

and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.



Prob. of HMM for Observation

Use Bayes Formula

Forward algorithm provides P(VT | θ)

Other two parameters are provided by 
domain knowledge 

• likelihood of the sequence itself, and prior 
probability of the model; e.g. using a language 
model for speech recognition

•  Probability of the HMM (model, P(θ)) often 
assumed uniform, and ignored for classification
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P (θ|VT ) =
P (VT|θ)P (θ)

P (VT )

5

Prob. of model, given 
visible sequence:



Decoding: Finding Hidden States

Decoding

Find most likely sequence of hidden states in HMM

Brute Force (Enumerate Sequences):

Again O(cT T); need a more efficient approach

Greedy Algorithm (with modification, O(c2 T))

Modify forward algorithm so that we add the most likely hidden 
state to a list after updating the state probabilities at time t.  
Return the list.

• Not guaranteed to produce a valid path.
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FIGURE 3.12. The decoding algorithm finds at each time step t the state that has the
highest probability of having come from the previous step and generated the observed
visible state vk . The full path is the sequence of such states. Because this is a local
optimization (dependent only upon the single previous time step, not the full sequence),
the algorithm does not guarantee that the path is indeed allowable. For instance, it
might be possible that the maximum at t = 5 is ω1 and at t = 6 is ω2, and thus
these would appear in the path. This can even occur if a12 = P(ω2(t + 1)|ω1(t)) = 0,
precluding that transition. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Viterbi Algorithm

Purpose

Decoding; computes the most likely 
sequence of states for an observation 
sequence 

• State sequence will be consistent with HMM 
transition probabilities

Brief Summary

A dynamic programming algorithm that 
incrementally computes the most likely 
sequence of states from start to finish state
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Backward Algorithm

Computes P(VT | θ)

Like the forward algorithm, but moving from 
the final state back to the initial state.  The 
algorithm computes the recurrence:

and returns βk(0), for initial state k
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P (θ|VT ) =
P (VT|θ)P (θ)

P (VT )

βj(t) =






0, if t = T and j != final state
1, if t = T and j = final state∑

j βj(t + 1)aij bjkv(t + 1) otherwise

5

(prob. of visible symbol vk)



Learning
Optimal HMM Parameter Setting

For transition probabilities; no known 
method.

Forward-Backward Algorithm

A form of expectation-maximization (EM); 
iteratively updates transitions to better 
explain the observed sequences

• Also known as the Baum-Welch algorithm
18



Individual Transition Probabilities

Estimate Updates:
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γij(t) =
αi(t− 1)aijbjkβj(t)

P (VT |θ)

6

forward backwardtrans+emit

(evaluation: e.g. by forward alg.)
γij(t) =

αi(t− 1)aijbjkβj(t)

P (VT |θ)

âij =

∑T
t=1 γij(t)

∑T
t=1

∑
k γik(t)

b̂jk =

∑T
t=1

v(t)=vk

∑
l γjl(t)

∑T
t=1

∑
l γjl(t)

6

γij(t) =
αi(t− 1)aijbjkβj(t)

P (VT |θ)

âij =

∑T
t=1 γij(t)

∑T
t=1

∑
k γik(t)

b̂jk =

∑T
t=1

v(t)=vk

∑
l γjl(t)

∑T
t=1

∑
l γjl(t)

6

expected state i-j transitions (at any t)

expected state i-any transitions (at any t)

expected state j transmitting any 
symbol 

expected state j transmitting vk 

(transmitted after transition to state l)



Forward-Backward Algorithm

Initialization: 

• Given training sequence VT, convergence threshold λ

• Set transition probabilities randomly 

Do:

• Compute updated hidden and visible state transition 
estimates, per last slide

• Compute largest difference between previous and current 
transition (aij) and emission (bij) transition estimates

Until: Largest estimated difference is < λ  (convergence)

• Return transition estimates (aij) and emission (bij) 
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