Clustering

DHS 10.6-10.7,10.9-10.10, 10.4.3-10.4.4




Clustering

Definition

A form of unsupervised learning, where we identify
groups in feature space for an unlabeled sample set

® Define class regions in feature space using unlabeled
data

® Note: the classes identified are abstract, in the sense
that we obtain ‘cluster O’ ...‘cluster n’ as our classes
(e.g. clustering MNIIST digits, we may not get |10
clusters)
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Applications

Clustering Applications Include:

® Data reduction: represent samples by their
associated cluster

® Hypothesis generation

® Discover possible patterns in the data: validate
on other data sets

® Hypothesis testing
® Test assumed patterns in data
® Prediction based on groups

® e.g.selecting medication for a patient using
clusters of previous patients and their reactions
to medication for a given disease




Kuncheva:
Supervised vs.
Unsupervised
Classification

2 FUNDAMENTALS OF PATTERN RECOGNITION

@® | rovien|  The User comes to us
with their problem

Feature nomination, data collection

Unsupervised Supervised

Selection of a clustering method Feature selection and extraction

Selection of a classifier model

1 Clustering the data

Training

1
i
T |
isod Testing
-
AT |

Result OK?

The User walkes away
with the solution!

Fig. 1.1 The pattern recognition cycle.




A Simple Example

Assume Class Distributions Known to be Normal

Can define clusters by mean and covariance matrix

However...

We may need more information to cluster well

® Many different distributions can share a mean
and covariance matrix

® ...number of clusters!?
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FIGURE 10.6. These four data sets have identical statistics up to second-order—that
is, the same mean p and covariance 2. In such cases it is important to include in the
model more parameters to represent the structure more completely. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by
John Wiley & Sons, Inc.




Steps for Clustering

|. Feature Selection
® Ideal: small number of features with little redundancy
2. Similarity (or Proximity) Measure ,
Y ( ) Red: defining
® Measure of similarity or dissimilarity ‘cluster space’

3. Clustering Criterion

® Determine how distance patterns determine cluster likelihood (e.g.
preferring circular to elongated clusters)

4. Clustering Algorithm

® Search method used with the clustering criterion to identify clusters
5.Validation of Results

® Using appropriate tests (e.g. statistical)
6. Interpretation of Results

® Domain expert interprets clusters (clusters are subjective) 'S y
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Choosing a Similarity Measure

Most Common: Euclidean Distance

Roughly speaking, want distance between samples in a cluster
to be smaller than the distance between samples in different

clusters

® Example (next slide): define clusters by a maximum
distance do between a point and a point in a cluster

® Rescaling features can be useful (transform the space)

® Unfortunately, normalizing data (e.g. by setting
features to zero mean, unit variance) may eliminate

subclasses

® One might also choose to rotate axes so they
coincide with eigenvectors of the covariance
matrix (i.e. apply PCA)




FIGURE 10.7. The distance threshold affects the number and size of clusters in similarity based clustering
methods. For three different values of distance dj, lines are drawn between points closer than dy—the smaller
the value of dy, the smaller and more numerous the clusters. From: Richard O. Duda, Peter E. Hart, and David

G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 10.8. Scaling axes affects the clusters in a minimum distance cluster method.
The original data and minimum-distance clusters are shown in the upper left; points in
one cluster are shown in red, while the others are shown in gray. When the vertical axis
is expanded by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the
clustering is altered (as shown at the right). Alternatively, if the vertical axis is shrunk by
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FIGURE 10.9. If the data fall into well-separated clusters (left), normalization by scaling
for unit variance for the full data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the full data set arises from a
single fundamental process (with noise), but inappropriate if there are several different
processes, as shown here. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Other Similarity Measures

Minkowski Metric (Dissimilarity)

d 1/q
Change the exponent q: d(x,x') = (Z |2k — x?ﬁ)

k=1

® g = |:Manhattan (city-block) distance

® q = 2:Euclidean distance (only form invariant to
translation and rotation in feature space)

xTx/

Cosine Slmllarlty s(x,x') = [ |||

Characterizes similarity by the cosine of the angle
between two feature vectors (in [0,1])

® Ratio of inner product to vector magnitude product

® Invariant to rotations and dilation (not translation) £ n




More on Cosine Similarity

xTx/

If features binary-valued:  s(xx) =
® Inner product is sum of shared feature values

® Product of magnitudes is geometric mean of
number of attributes in the two vectors

Variations

Frequently used for Information Retrieval

. . . . X X
® Ratio of shared attributes (identical lengths): s(x,x') = —
® TJanimoto distance: ratio of shared attributes to

attributes in x or X’ N xTx'
RI-T s(%,X) = 5, T —xTx £ 1




Cosine Similarity: Tag Sets for YouTube
Videos (Example by K. Kluever)

Let A and B be binary vectors of the same
length (represent all tags in A&B)

Tag Set | Occ. Vector

dog puppy funny cat

Ay A
Ry B
A-B
SIM(A, B) = cosf = TA[B]

RIT Here SIM(A, B) is 2/3. y

1 1 1 0
1 1 0 1

| A N Ry|
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VAt |/ Re




Additional Similarity Metrics

Theodoridis Text

Defines a large number of alternative
distance metrics, including:

® Hamming distance: number of locations where
two vectors (usually bit vectors) disagree

® Correlation coefficient

® Weighted distances...
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Criterion Functions for Clustering

Criterion Function

Quantifies ‘quality’ of a set of clusters

® C(Clustering task: partition data set D into c disjoint
sets D ... D¢

® Choose partition maximizing the criterion function
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Criterion: Sum of Squared Error

Je:z Z HX_:“Dz'

1=1x€eD;

2

Measures total squared ‘error’ incurred by choice of
cluster centers (cluster means)

‘Optimal’ Clustering
Minimizes this quantity
Issues

® Well suited when clusters compact and well-separated

® Different # points in each cluster can lead to large
clusters being split ‘unnaturally’ (next slide)

® Sensitive to outliers y




J, = small

FIGURE 10.10. When two natural groupings have very different numbers of points, the
clusters minimizing a sum-squared-error criterion J. of Eq. 54 may not reveal the true
underlying structure. Here the criterion is smaller for the two clusters at the bottom than
for the more natural clustering at the top. From: Richard O. Duda, Peter E. Hart, and

David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.




Related Criteria: Min Variance
P 5= 22 Z x — x|

An Equivalent Formulation for SSE

S; : mean squared distance between points in cluster i
(variance)

® Alternative Criterions: use median, maximum, other
descriptive statistic on distance for S;

Variation: Using Similarity (e.g. Tanimoto)

s may be any similarity function (in this case, maximize)

= X Y eb¥) S i s(ed)
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Criterion: Scatter Matrix-Based

trace

1=1x€eD;

Z Z HX_MHz

R-I-T

Minimize Trace of Sy (within-class)

Equivalent to SSE!

Recall that total scatter is the sum of within
and between-class scatter (Sm = Sw + Sb).
This means that by minimizing the trace of
Sw, we also maximize Sb (as Sm is fixed):

trace|Sy| =

ZmHm

tol |’




Scatter-Based Criterions, Cont'd

=150 = |3 3 (x — ) (x — )"

i=1 xeD;

Determinant Criterion

Roughly measures square of the scattering
volume; proportional to product of variances
in principal axes (minimize!)

® Minimum error partition will not change with
axis scaling, unlike SSE

21




Scatter-Based: Invariant Criteria
Invariant Criteria (Eigenvalue-based)

Eigenvalues: measure ratio of between to within-
cluster scatter in direction of eigenvectors
(maximize!)

® Trace of a matrix is sum of eigenvalues (here d is
length of feature vector)

® FEigenvalues are invariant under non-singular linear
transformations (rotations translations, scaling, etc.)

trace|S 1Sb Z oy

d
1
1
RIT Jf = t’I“CLCe[Sm Sw] — Z T+ A, £, n

1=1




Clustering with a Criterion

Choosing Criterion

Creates a well-defined problem

® Define clusters so as to maximize the
criterion function

® A search problem

® Brute force solution: enumerate partitions
of the training set, select the partition with

maximum criterion value
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Comparison: Scatter-Based Criteria
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The raw data shown at the top does not exhibit any obvious clusters. The clusters found
by minimizing a criterion depends upon the criterion function as well as the assumed
number of clusters. The sum-of-squared-error criterion J, (Eq. 54), the determinant cri-
terion Jy (Eq. 68) and the more subtle trace criterion Jr (Eq. 70) were applied to the 20
points in the table with the assumption of ¢ = 2 and ¢ = 3 clusters. (Each point in the ta-
ble is shown, with bounding boxes defined by —1.8 < x; < 2.5 and —0.6 < x; < 1.9

24




Hierarchical Clustering

Motivation

Capture similarity/distance relationships
between sub-groups and samples within the
chosen clusters

® Common in scientific taxonomies (e.g.
biology)

® Can operate bottom up (individual samples to
clusters, or agglomerative clustering) or top-
down (single cluster to individual samples, or
divisive clustering)
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Agglomerative Hierarchical Clustering

Problem: Given n samples, we want c clusters
One solution: Create a sequence of partitions (clusterings)
® First partition, k = I: n clusters (one cluster per sample)

® Second partition,k = 2: n-1| clusters

® Continue reducing the number of clusters by one: merge 2 closest
clusters (a cluster may be a single sample) at each step k until...

® Goal partition:k =n-c + |: c clusters

® Done; but if we're curious, we can continue on until the...
e _ .Final partition, k = n: one cluster
Result
All samples and sub-clusters organized into a tree (a dendrogram)

® Often show cluster similarity for a dendrogram diagram (Y-axis)

If as stated above whenever two samples share a cluster they remain in
a cluster at higher levels, we have a hierarchical clustering y

r
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FIGURE 10.11. A dendrogram can represent the results of hierarchical clustering algo-
rithms. The vertical axis shows a generalized measure of similarity among clusters. Here,
at level 1 all eight points lie in singleton clusters; each point in a cluster is highly similar
to itself, of course. Points x, and x; happen to be the most similar, and are merged at
level 2, and so forth. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.

k=38

FIGURE 10.12. A set or Venn diagram representation of two-dimensional data (which
was used in the dendrogram of Fig. 10.11) reveals the hierarchical structure but not the
quantitative distances between clusters. The levels are numbered by k, in red. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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Distance Measures

ZCEDi,LBGDj

dmaz(Diy D;) = max ||z — 2'||

xe€D;,xeD;

> D |z =

davg(Di, Dj)
n] xeD; x'€D;

dmean(Di7 DJ) — Hml o m]”

Listed Above:

Minimum, maximum and average inter-sample
distance (samples for clusters i,j: Di, D))

Difference in cluster means (m;, m)

28




Nearest-Neighbor Algorithm

. /
“Q: . 1) . dmzn(D“D]) — 111111 H'CC — X H
Also Known as “Single-Linkage” Algorithm z€D;zED;

Agglomerative hierarchical clustering using dmin

® Two nearest neighbors in separate clusters determine clusters merged
at each step

® |f we continue until k = n (c = |), produce a minimum spanning tree
(similar to Kruskal’s alg.)

® MST: Path exists between all node (sample) pairs, sum of edge
costs minimum for all spanning trees

Issues

Sensitive to noise and slight changes in position of data points (chaining effect)

® Example: next slide




FIGURE 10.13. Two Gaussians were used to generate two-dimensional samples, shown
in pink and black. The nearest-neighbor clustering algorithm gives two clusters that well
approximate the generating Gaussians (left). If, however, another particular sample is
generated (circled red point at the right) and the procedure is restarted, the clusters do
not well approximate the Gaussians. This illustrates how the algorithm is sensitive to
the details of the samples. From: Richard O. Duda, Peter E. Hart, and David G. Stork,

Pattern Classitication. Copyright © 2001 by John Wiley & Sons, Inc.




Farthest-Neighbor Algorithm

dimar(Di, D;) = max ||z — ||

CUEDZ',mEDj
Agglomerative hierarchical clustering using dmax

® C(Clusters with the smallest maximum distance between two
points are merged at each step

® (Goal: minimal increase to largest cluster diameter at
each iteration (discourages elongated clusters)

® Known as ‘Complete-Linkage Algorithm’ if terminated when
distance between nearest clusters exceeds a given threshold
distance

Issues

Works well for compact and roughly equal in size; with
elongated clusters, result can be meaningless £ 3
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d,.. = large d,..= small

FIGURE 10.14. The farthest-neighbor clustering algorithm uses the separation between
the most distant points as a criterion for cluster membership. If this distance is set very
large, then all points lie in the same cluster. In the case shown at the left, a fairly large
dmax leads to three clusters; a smaller dy,.« gives four clusters, as shown at the right. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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Using Mean Avg Distances

davg(D D nn Z Z HZ'—CUH
J xe€D; x'e€D;
dmean(DiaDj) — Hm’t o m]”

Reduces Sensitivity to Outliers

Mean less expensive to compute than avg,
min, max (each require n; * n; distances)

33




Stepwise Optimal Hierarchical Clustering
Problem

None of the agglomerative methods discussed so far directly
minimize a specific criterion function

Modified Agglomerative Algorithm:
Fork=1lto(n-c+ 1)

® Find clusters whose merger changes criterion least, D; and D;

® Merge D and D;

Example: Minimal increase in SSE (Je) de(Di; Dy) = n; +n;

de defines the cluster pair that increases Je as little as possible. May not
minimize SSE, but often good starting point

® prefers merging single elements or small with large clusters vs.

R-I-T merging medium-size clusters £ 34




|.
%

Lo
.

b}

k-Means Clustering
k-Means Algorithm

For a number of clusters k:
|. Choose k data points at random
2. Assign all data points to closest of the k cluster centers
3. Re-compute k cluster centers as the mean vector of each cluster
* [f cluster centers do not change, stop

* Else,goto 2

Complexity

O(ndcT) - T iterations, d features, n points, c clusters, in practice
usually T << n (much fewer than n iterations)

Note: means tend to move minimizing squared error criterion . ..

y ]




FIGURE 10.2. The k-means clustering procedure is a form of stochastic hill climbing
in the log-likelihood function. The contours represent equal log-likelihood values for
the one-dimensional data in Fig. 10.1. The dots indicate parameter values after different
iterations of the k-means algorithm. Six of the starting points shown lead to local max-
ima, whereas two (i.e., 11(0) = u»(0)) lead to a saddle point near p = 0. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001
by John Wiley & Sons, Inc.
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FIGURE 10.1. (Above) The source mixture density used to generate sample data, and
two maximum-likelihood estimates based on the data in the table. (Bottom) Log-
likelihood of a mixture model consisting of two univariate Gaussians as a function of
their means, for the data in the table. Trajectories for the iterative maximum-likelihood
estimation of the means of a two-Gaussian mixture model based on the data are shown
as red lines. Two local optima (with log-likelihoods —52.2 and —56.7) correspond to the
two density estimates shown above. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.




FIGURE 10.3. Trajectories for the means of the k-means clustering procedure applied to
two-dimensional data. The final Voronoi tesselation (for classification) is also shown—
the means correspond to the “centers” of the Voronoi cells. In this case, convergence is
obtained in three iterations. From: Richard O. Duda, Peter E. Hart, and David G. Stork,

Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.




Fuzzy k-means

Basic Idea

Allow every point to have a probability of
membership in every cluster. The criterion (cost
function) minimized is:

S fuz = ZZ wz\x], ny zHQ

1=1 =1

Theta is the membership function parameter set.
b (‘blending’) is a free parameter:

® b = 0: Sum of squared error criterion (one cluster
per data point)

® b > |:each pattern may belong to multiple clusters .
Ed
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Fuzzy k-Mean Clustering Algorithm

Z;-L:l[p(wi’l‘j)]bxj (1/dij>1/(b_1)

— Pwila;) = -
" 5 c_(1/d.;)/ (-1
Sy [Pl 2/ )
Algorithm dij = l|z; — pil |

. Compute probability of each class for every point in the

training set (uniform probability: equal likelihood in each
cluster)

Recompute means using expression at top-left

Recompute probability of each class for each point using
expression at top right

e If change in means and membership probabilities for
points is small, stop

e Else goto 2
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FIGURE 10.4. At each iteration of the fuzzy k-means clustering algorithm, the prob-
ability of category memberships for each point are adjusted according to Egs. 32 and
33 (here b = 2). While most points have nonnegligible memberships in two or three
clusters, we nevertheless draw the boundary of a Voronoi tesselation to illustrate the
progress of the algorithm. After four iterations, the algorithm has converged to the red
cluster centers and associated Voronoi tesselation. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.
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Fuzzy k-means, Cont'd

Convergence Properties

Sometimes fuzzy k-means improves
convergence over classical k-means

However, probability of cluster membership
depends on the number of clusters; can lead
to problems if poor choice of k is made

42
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Cluster Validity

So far...

We've assumed that we know the number of clusters

When number of clusters isn’t known

We can try a clustering procedure using c=1, c=2,
etc., and making note of sudden decreases in the

error criterion (e.g. SSE)

More formal: statistical tests, however problem of
testing cluster validity is unsolved

® DHS: Section 10.10 presents a statistical test
centered around testing the null hypothesis of
having c clusters, by comparing with c+1
clusters .




