
Classifier Combination

Kuncheva Ch. 3

Combination:
The Statistical Reason

2

Dietterich [106] suggests three types of reasons why a classifier ensemble might
be better than a single classifier.

3.1.1 Statistical

Suppose we have a labeled data set Z and a number of different classifiers with a
good performance on Z. We can pick a single classifier as the solution, running
onto the risk of making a bad choice for the problem. For example, suppose that
we run the 1-nn classifier or a decision tree classifier for L different subsets of fea-
tures thereby obtaining L classifiers with zero resubstitution error. Although these
classifiers are indistinguishable with respect to their (resubstitution) training error,
they may have different generalization performances. Instead of picking just one
classifier, a safer option would be to use them all and “average” their outputs.
The new classifier might not be better than the single best classifier but will diminish
or eliminate the risk of picking an inadequate single classifier.

Dietterich gives a graphical illustration of this argument as shown in Figure 3.1.12

The outer circle denotes the space of all classifiers. The shaded inner region contains
all classifiers with good performances on the training data. The best classifier for the
problem (supposedly with a good performance on the training data too) is denoted
by D!. The hope is that some form of aggregating of the L classifiers will bring the
resultant classifier closer to D! than a classifier randomly chosen from the classifier
space would be.

Fig. 3.1 The statistical reason for combining classifiers. D ! is the best classifier for the problem,
the outer curve shows the space of all classifiers; the shaded area is the space of classifiers with
good performances on the data set.

12 The appearance and notations in the figures inspired by Ref. [106] are changed so as to be consistent
with the rest of the book.

102 MULTIPLE CLASSIFIER SYSTEMS

Combination: The
Computational Reason

3

3.1.2 Computational

Some training algorithms perform hill-climbing or random search, which may lead
to different local optima. Figure 3.2 depicts this situation. We assume that the train-
ing process of each individual classifier starts somewhere in the space of possible
classifiers and ends closer to the optimal classifier D!. Some form of aggregating
may lead to a classifier that is a better approximation to D! than any single Di.

3.1.3 Representational

It is possible that the classifier space considered for the problem does not contain the
optimal classifier. For example, the optimal classifier for the banana data discussed
earlier is nonlinear. If we restrict the space of possible classifiers to linear classifiers
only, then the optimal classifier for the problem will not belong in this space. How-
ever, an ensemble of linear classifiers can approximate any decision boundary with
any predefined accuracy. If the classifier space is defined differently, D! may be an
element of it. In this case, the argument is that training an ensemble to achieve a cer-
tain high accuracy is more straightforward than training directly a classifier of high
complexity. For example, a single neural network can be trained for the problem
instead of looking at a combination of simple classifiers. When there are many par-
ameters (weights) to be tuned, a local extremum of the error function is likely to be
found. An ensemble of simple classifiers might be a better option for such problems.
Figure 3.3 illustrates the case where the optimal classifier D! is outside the chosen
space of classifiers.

Note that an improvement on the single best classifier or on the group’s average
performance, for the general case, is not guaranteed. What is exposed here are only

Fig. 3.2 The computational reason for combining classifiers. D ! is the best classifier for the
problem, the closed space shows the space of all classifiers, the dashed lines are the
hypothetical trajectories for the classifiers during training.

PHILOSOPHY 103

Combination: The
Representational Reason

4

“clever heuristics.” However, the experimental work published so far and the
theories developed for a number of special cases demonstrate the success of
classifier combination methods.

3.2 TERMINOLOGIES AND TAXONOMIES

The series of annual International Workshops on Multiple Classifier Systems
(MCS), held since 2000, has played a pivotal role in organizing, systematizing,
and developing further the knowledge in the area of combining classifiers [107–
110]. We still do not have an agreed upon structure or a taxonomy of the whole
field, although a silhouette of a structure is slowly crystallizing among the numerous
attempts. Providing yet another taxonomy is not the intention of this chapter. We
will rather look at several popular ways to summarize the work in the field in the
hope that a structure will be found in the future.

Before the series of MCS workshops, classifier combination went through paral-
lel routes within pattern recognition and machine learning, and perhaps in other
areas such as data fusion. This brought various terms for the same notion. We
note that some notions are not absolutely identical but bear the specific flavor of
their area of origin. For example

classifier ¼ hypothesis ¼ learner ¼ expert

and

example ¼ instance ¼ case ¼ data point ¼ object

Fig. 3.3 The representational reason for combining classifiers. D " is the best classifier for the
problem; the closed shape shows the chosen space of classifiers.

104 MULTIPLE CLASSIFIER SYSTEMS

Classifier Ensembles:
Types of Combination

5

A similar variety of terminology can be observed in the toolbox of methods for clas-
sifier combination.

A starting point for grouping ensemble methods can be sought in the ways of
building the ensemble. The diagram in Figure 3.4 illustrates four approaches aiming
at building ensembles of diverse classifiers.

This book is mainly focused on Approach A. Chapters 4, 5, and 6 contain details
on different ways of combining the classifier decisions. The base classifiers
(Approach B) can be any of the models discussed in Chapter 2 along with classifiers
not discussed in this book. Many ensemble paradigms employ the same classifi-
cation model, for example, a decision tree or a neural network, but there is no evi-
dence that this strategy is better than using different models. The design of the base
classifiers for the ensemble is partly specified within the bagging and boosting
models (Chapter 7) while designing the combiner is not coupled with a specific
base classifier. At feature level (Approach C) different feature subsets can be used
for the classifiers. This topic is included in Chapter 8. Finally, the data sets can
be modified so that each classifier in the ensemble is trained on its own data set
(Approach D). This approach has proven to be extremely successful owing to the
bagging and boosting methods described in Chapter 7.

Although many of the existing streams in classifier combination are captured in
the four-approaches classification, there are many more that are left outside. For
example, a remarkably successful ensemble building heuristic is manipulating the
output labels by using error correcting codes (ECOC) (Chapter 8). Other topics
of interest include clustering ensembles (Chapter 8) and diversity in classifier
ensembles (Chapter 10). Developing a general theory, as impossible as it sounds,

Fig. 3.4 Approaches to building classifier ensembles.

TERMINOLOGIES AND TAXONOMIES 105

Training:
Stacked Generalization

Protocol:

Train base classifiers using cross-fold validation

Then train combiner on all N points by using
the class labels output by the base classifiers for
each fold (train/test partition) 6

3.3.2 Idea of Stacked Generalization

Stacked generalization has been defined as a generic methodology for improving
generalization in pattern classification [117]. We will regard it here as a philosophy
for combining classifiers with a special emphasis on the training protocol.

Let Z be our data set with N points zj [Rn labeled in V ¼ {v1, . . . ,vc}. Let us
partition Z into four disjoint subsets of roughly equal size, A, B, C, and D. Suppose
that we have three classifier models D1, D2, D3, and have trained each classifier
according to the standard four-fold cross-validation process depicted in Figure 3.5.
At the end of this training there will be four versions of each of our classifiers trained
on (ABC), (BCD), (ACD), or (ABD), respectively.

The combiner is trained on a data set of size N obtained in the following way. For
any data point zj in subset A, we take the outputs for that point from the versions of
D1, D2, and D3 built on (BCD). In this way subset A has not been seen during the
training of the individual classifiers. The three outputs together with the label of
zj form a data point in the training set for the combiner. All the points from subset
B are processed by the versions of the three classifiers built on (ACD) and the out-
puts added to the training set for the combiner, and so on. After the combiner has
been trained, the four subsets are pooled again into Z and D1, D2, and D3 are
retrained, this time on the whole of Z. The new classifiers and the combiner are
then ready for operation.

3.4 REMARKS

We might pride ourselves for working in a modern area of pattern recognition and
machine learning that started about a decade ago but, in fact, combining classifiers is
much older. Take for example the idea of viewing the classifier output as a new fea-
ture vector. This could be traced back to Sebestyen [9] in his book Decision-Making
Processes in Pattern Recognition, published in 1962. Sebestyen proposes cascade
machines where the output of a classifier is fed as the input of the next classifier
in the sequence, and so on. In 1975 Dasarathy and Sheila [118] propose a compound
classifier where the decision is switched between two different classifier models
depending on where the input is located. The book by Rastrigin and Erenstein
[119], published in 1981, contains what is now known as dynamic classifier selec-
tion [120]. Unfortunately, Rastrigin and Erenstein’s book only reached the

Fig. 3.5 Standard four-fold cross-validation set-up.

REMARKS 109

Other Issues
Fusion vs. Selection

Trainable vs. Non-trainable Combiners

Decision Optimization vs. Coverage
Optimization

• Tuning a fixed set of base classifiers vs. creating diverse
base classifiers using a fixed combiner

7

Fusion of Class Labels
Kuncheva, Ch. 4

Let’s Start at the End...

9

Next we use Eq. (4.80) to find sd ¼ ½0:40, 0:01, 0:00, 0:00#T . Similarly, we can
derive the sd for an x labeled by all 15 classifiers as v2. In this case, sd ¼
½$1:05, 0:01, 0:01, 0:00#T . The two prototypes calculated in this way are plotted
in Figure 4.6.

4.8 CONCLUSIONS

This chapter describes various methods for combining class label outputs. Formally
speaking, we transformed the problem to find a mapping

D : Rn ! V (4:82)

into a problem of finding a mapping

F : VL ! V (4:83)

We can call VL an intermediate feature space, which in this case is discrete. The
methods described here varied on the assumptions and also on the complexity of
their implementation. Table 4.11 summarizes the methods in this chapter.

Here we bring the results from a single illustrative experiment. The Pima Indian
Diabetes data set was used again, in a 10-fold cross-validation experiment (rotated
90 percent for training and 10 percent for testing). Figure 4.8 shows the mean accu-
racies from the 10 runs, for training and for testing. The single best classifier in the
ensemble is also displayed to set up a baseline for the ensemble accuracy.

The individual classifiers were MLP NNs, each one with a single hidden layer
containing 25 nodes, trained starting with different random initializations. Nine clas-
sifiers were trained on each training/testing split of the data set. The standard back-

TABLE 4.11 A Summary of the Label Fusion Methods.

Method
Assumptions

(for Optimality)

Memory Requirements
(in Number of Parameters
Needed for Its Operation)

Majority vote None None
Weighted majority vote None L
Naive Bayes Conditional

independence
L % c 2

Behavior knowledge space (BKS) None c L

Wernecke None c L

First-order dependence tree Conditional first-order
dependence

c % [(L 2 1) % c 2 þ L]

SVD combination None [L % c þ (c þ 1)]d
(d & minfN, (L . c)g)

SVD, singular value decomposition.

144 FUSION OF LABEL OUTPUTS

Methods for Fusing
Class (Label) Outputs

10

Next we use Eq. (4.80) to find sd ¼ ½0:40, 0:01, 0:00, 0:00#T . Similarly, we can
derive the sd for an x labeled by all 15 classifiers as v2. In this case, sd ¼
½$1:05, 0:01, 0:01, 0:00#T . The two prototypes calculated in this way are plotted
in Figure 4.6.

4.8 CONCLUSIONS

This chapter describes various methods for combining class label outputs. Formally
speaking, we transformed the problem to find a mapping

D : Rn ! V (4:82)

into a problem of finding a mapping

F : VL ! V (4:83)

We can call VL an intermediate feature space, which in this case is discrete. The
methods described here varied on the assumptions and also on the complexity of
their implementation. Table 4.11 summarizes the methods in this chapter.

Here we bring the results from a single illustrative experiment. The Pima Indian
Diabetes data set was used again, in a 10-fold cross-validation experiment (rotated
90 percent for training and 10 percent for testing). Figure 4.8 shows the mean accu-
racies from the 10 runs, for training and for testing. The single best classifier in the
ensemble is also displayed to set up a baseline for the ensemble accuracy.

The individual classifiers were MLP NNs, each one with a single hidden layer
containing 25 nodes, trained starting with different random initializations. Nine clas-
sifiers were trained on each training/testing split of the data set. The standard back-

TABLE 4.11 A Summary of the Label Fusion Methods.

Method
Assumptions

(for Optimality)

Memory Requirements
(in Number of Parameters
Needed for Its Operation)

Majority vote None None
Weighted majority vote None L
Naive Bayes Conditional

independence
L % c 2

Behavior knowledge space (BKS) None c L

Wernecke None c L

First-order dependence tree Conditional first-order
dependence

c % [(L 2 1) % c 2 þ L]

SVD combination None [L % c þ (c þ 1)]d
(d & minfN, (L . c)g)

SVD, singular value decomposition.

144 FUSION OF LABEL OUTPUTS

Classifier Output Types
(Xu, Krzyzak, Suen; ad. by Kuncheva)

Type 0: Oracle Level (Kuncheva)

Outputs: 0/1 (incorrect/correct)

Type 1: Abstract Level

Outputs: Chosen class label

Type 2: Rank Level

List of ranked class labels

Type 3: Measurement Level

Output: (Usually) values in [0,1] for each .class
(discriminant function outputs) 11

Simple Consensus Models

12confidence or produces a tie. Thus the decision is

vk, if
PL

i¼1 di,k " a # L,
vcþ1, otherwise,

(

ð4:3Þ

where 0 , a ' 1. For the simple majority, we can pick a to be 1
2 þ 1, where

0 , 1 , 1=L. When a ¼ 1, Eq. (4.3) becomes the unanimity vote rule: a decision
is made for some class label if all decision makers agree on that label; otherwise
the ensemble refuses to decide and assigns label vcþ1 to x.

The plurality vote of Eq. (4.2), called in a wide sense “the majority vote,” is the
most often used rule from the majority vote group. Various studies are devoted to the
majority vote for classifier combination [121,129–133].

To find out why the majority vote is one of the most popular combination
schemes, we will examine its properties. Assume that:

. The number of classifiers, L, is odd.

. The probability for each classifier to give the correct class label is p for any
x [Rn.

. The classifier outputs are independent; that is, for any subset of classifiers
A # D, A ¼ {Di1 , . . . , DiK}, the joint probability can be decomposed as

P(Di1 ¼ si1 , . . . , DiK ¼ siK) ¼ P(Di1 ¼ si1)(# # # (P(DiK ¼ siK) (4:4)

where sij is the label output of classifier Di, j.

According to Eq. (4.2), the majority vote will give an accurate class label if at
least bL=2cþ 1 classifiers give correct answers (bac denotes the “floor,” that is,

Fig. 4.1 Consensus patterns in a group of 10 decision makers: unanimity, simple majority, and
plurality. In all three cases the final decision of the group is “black.”

MAJORITY VOTE 113

