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Bayesian Decision Theory

The Basic Idea

To minimize errors, choose the least risky
class, i.e. the class for which the expected loss
is smallest

Assumptions

Problem posed in probabilistic terms, and all
relevant probabilities are known




Probability Mass vs. Probability
Density Functions

Probability Mass Function, P(x)

Probability for values of discrete random variable x. Each
value has its own associated probability

P(x) > 0, and Plx)=1 b
@ ; @) Prlz € (a,b)] :/ p(z) dx
Probability Density, p(x) p(x) > 0 and /OO p(x) do =1

Probability for values of continuous random variable x.
Probability returned is for an interval within which the
value lies (intervals defined by some unit distance)
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Prior Probability

Definition ( P(w ) )

The likelihood of a value for a random variable

representing the state of nature (true class for the
current input), in the absence of other information

® [nformally,“what percentage of the time state X
occurs”

Example

The prior probability that an instance taken from
two classes is provided as input, in the absence of

any features (e.g. P(cat) = 0.3, P(dog) = 0.7)




Class-Conditional Probability Density
Function (for Continuous Features)

Definition (p(x|w))

The probability of a value for continuous
random variable x, given a state of nature w

® For each value of x, we have a different class-
conditional pdf for each class in w (example
next slide)

ro
r™
ey
I—




1

'4
~
e

Lo

Example: Class-Conditional
Probability Densities
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-

ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,

and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.
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Bayes Formula

Pl la) — p(z|w;) P(w;) posterior = likelihood x prior
(wjlz) = , '
p(z) evidence

C

where p(x) = ZP@M)PWJ')

j=1
Purpose

Convert class prior and class-conditional
densities to a posterior probability for a class: the
probability of a class given the input features

(‘post-observation’)
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Example: Posterior Probabilities

: X
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FIGURE 2.2. Posterior probabilities for the particular priors P(wy) = 2/3 and P(w,)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category w, is roughly 0.08, and that it is in wq is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.
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Choosing the Most Likely Class

What happens if we do the following?
Decide wy if P(wy|z) > P(ws|x); otherwise decide ws

A. We minimize the average probability of
error. Consider the two-class case from
previous slide:

P(error|z) = P(wi|z) if we choose ws
| Plwsalz) if we choose w;

P(error) :/ P(error|x)p(z) dx (average error)

o0
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Expected Loss or Conditional Risk
of an Action

R(oy|x) = Z Aag|w;) P(w;|x)

Explanation

The expected (“‘average”) loss for taking an
action (choosing a class) given an input
vector, for a given conditional loss function

(lambda)
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Decision Functions and
Overall Risk

R = /R(a(az)\w)p(x) dx

Decision Function or Decision Rule

( alpha(x) ): takes on the value of exactly one
action for each input vector x

Overall Risk

The expected (average) loss associated with
a decision rule
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Bayes Decision Rule

ldea

Minimize the overall risk, by choosing the action
with the least conditional risk for input vector x

Bayes Risk (R*)

The resulting overall risk produced using this
procedure. This is the best performance that can
be achieved given available information.
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Bayes Decision Rule: Two
Category Case

Bayes Decision Rule

For each input, select class with least
conditional risk, i.e. choose class one if:

R(aq|x) < R(ag|x)

where 0\ = Malw;)

R(a1]|x) = A1 P(w1]x) + A2 P(wo|x)

R(ag|x) = A1 P(w1|x) + A2 P(wa|x)




Alternate Equivalent Expressions of Bayes
Decision Rule (“Choose Class One If...”)

Posterior Class Probabilities
()\21 — )\11)P(W1’X) > ()\12 — AQQ)P(WQ‘X)

Class Priors and Conditional Densities

Produced by applying Bayes Formula to the above,
multiplying both sides by p(x)

(A21 — A1)p(x|wr) P(wr) > (A1 — Ag2)p(x|wa) P(ws)

Likelihood Ratio  P(Xlw1) _ Az = An Plws)
RIT p(X|wa) ~ Aot — Air Plwy)

[

14




:ch

The Zero-One Loss

Definition

01=9 . .
)\(Oézlw]):{l Z#; 7’7.]:17'“70

Conditional Risk for Zero-One Loss

R(a;|x) = Z)\ a;|lw;) P(w;i|x) = ZP(wj\X) = 1—P(w;|x)

JF

Bayes Decision Rule (min. error rate)

Decide w; if P(wj|x) > P(w;|x) forall j #1

F-[‘]
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Example: Likelihood Ratio

p(x|w,)
plx|w,)

4

D D

R R, R, R

FIGURE 2.3. The likelihood ratio p(x|wi)/p(x|w,) for the distributions shown in
Fig. 2.1. If we employ a zero-one or classification loss, our decision boundaries are
determined by the threshold 6,. If our loss function penalizes miscategorizing w, as w;
patterns more than the converse, we get the larger threshold 6, and hence R, becomes
smaller. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifica-
tion. Copyright © 2001 by John Wiley & Sons, Inc. Z
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Bayes Classifiers

Recall the “Canonical Model”

Decide class i if:
gi(x) > g;j(x) forall j #1

For Bayes Classifiers

Use the first discriminant def’n below for
general case, second for zero-one loss

g9i(x) = —R(a|x)
g9i(x) = P(wi|x)
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Equivalent Discriminants for Zero-
One Loss (Minimum-Error-Rate)

Trade-off

Simplicity of understanding vs. computation

p(x|w;) P(w;)
S o/ WYY )

g9i(x) = p(x|w;) P(w;)

g;(x) = In p(x|w;) + In P(w;)
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Discriminants for Two Categories

For Two Categories

We can use a single discriminant function,
with decision rule: choose class one if the
discriminant returns a value > 0.

Example: Zero-One Loss
g9(x) = Plwi]x) — P(wa|x)

| PX|w)
p(x|ws) P(ws)

g(x) =




Example: Decision Regions for
Binary Classifier
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0.3 p(x|w,)P(w,)

0.2

0.1

decision
boundary

FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R, is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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The (Univariate) Normal
Distribution

Why are Gaussians so Useful?

They represent many probability
distributions in nature quite accurately. In
our case, when patterns can be represented
as random variations of an ideal prototype
(represented by the mean feature vector)

® Everyday examples: height, weight of a
population
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Univariate Normal Distribution

p(x)

2.5% 2.5%

w-20 p-o 7 w+o u+20

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
X — i| < 20, as shown. The peak of the distribution has value p() = 1/+/2mo. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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Formal Definition

Peak of the Distribution (the mean)
1

2mo

Has value:

Definition for Univariate Normal
1 lfr—p ’
P(az)maexp[ 2( ~ ) ]

Def. for mean, variance 7 :/ z p(x) dx
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Multivariate Normal Density

Informal Definition

A normal distribution over two or more
variables (d variables/dimensions)

Formal Definition

) = g 0 | xS

u:/_ZXp(X) dx

5 = / (x — p)(x — )'p(x)dx
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